首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 640 毫秒
1.
采用大气底层边界速度型风场模拟自然风和Marshall-Palmer雨滴谱模型,应用离散相模型研究了风雨联合作用环境下列车运行时气动特性的变化情况.结果表明:雨滴颗粒的加入扰乱了列车周围气流的正常流动,减轻了列车背风侧气流漩涡的脱落,列车迎风侧和背风侧的压力差减小;降雨强度对列车气动特性影响不大,从20 mm/h增大到100 mm/h,受影响最大的横向力仅增大了9.11%;风雨耦合环境下列车的运行速度对气动阻力影响较明显,列车时速从200 km/h到400 km/h,阻力增大了102%;随着车速增大,车辆所受横向力与升力的变化规律与车辆在列车中的位置相关,头车所受到横向力明显增大,而尾车的横向力则呈减小趋势,而所受升力正好相反,头车呈减小趋势,尾车则明显升高.  相似文献   

2.
采用低温风洞试验对比了中国高速列车HST、法国高速列车TGV和德国高速列车ICE3的气动性能; 基于EN 14067和TSI标准在铝质材料模型上测试了不同侧偏角下列车阻力、升力和倾覆力矩; 利用粒子图像测速技术测量了列车周围流场, 得到了高速列车与空气的相互作用机理和气动现象; 采用计算流体力学方法模拟了高速列车实际运行情况, 并与低温风洞试验流场测试结果进行了对比。研究结果表明: 0°~10°侧偏角下列车阻力系数绝对值从大到小依次为HST、ICE3、TGV, 侧偏角为0°时, 3种列车的阻力系数分别为0.223、0.166、0.140;0°~5°侧偏角下列车升力系数绝对值从大到小依次为TGV、ICE3、HST, 且数值均接近0, 其中ICE3、HST为正升力, 列车受压向轨面力, TGV为负升力, 列车受上浮力; 0°~5°侧偏角下列车倾覆力矩系数绝对值从大到小依次为TGV、HST、ICE3, 侧偏角为0°时, 3种列车倾覆力矩系数分别为0.021、0.019、0.011;HST高速列车由于头部双层造型设计, 在头部曲面过渡处出现流动分离, 增大了列车摩擦阻力和压差阻力, 导致列车阻力系数比TGV和ICE3偏大一些, 但阻力系数在高速列车头型设计技术要求限值0.25之内, 且升力和倾覆力矩性能较好, 列车具有良好的稳定性, 满足高速列车头型气动设计的工程需求。   相似文献   

3.
为了揭示高速公路不同超高过渡段线形指标下小型客车滑水速度变化规律,考虑小型客车滑水过程轮胎受力特征,分析了滑水速度与水膜厚度和超高过渡段几何线形的作用关系;应用多元线性回归和流体力学仿真建立了高速公路超高过渡段小型客车滑水速度量化模型,计算了降雨强度、纵坡坡度、超高渐变率等多变量组合下的小型客车临界滑水速度;以典型双向四车道高速公路超高过渡段为例,分析了降雨强度、纵坡坡度、超高渐变率对小型客车滑水速度的影响规律,并给出了超高过渡段小型客车限制速度建议值。研究结果表明:小型客车滑水速度最大值出现在纵坡坡度为0.3%、超高渐变率为1/200、降雨强度为20 mm·h-1组合工况下,为115.5 km·h-1,滑水速度最小值出现在纵坡坡度为3.0%、超高渐变率为1/330、降雨强度为80 mm·h-1组合工况下,为99.3 km·h-1;在降雨强度和超高渐变率一定的情况下,随着纵坡坡度增大,滑水速度逐渐减小,当纵坡坡度由0.3%增加到3.0%时,滑水速度减小2.68%;在降雨强度和纵坡坡度一定条件下,随着超高渐变率增大,滑水速度逐渐增大,当超高渐变率从1/330增加到1/200时,滑水速度上升了2.25%;增加纵坡坡度会降低滑水速度,但当降雨强度增加到一定程度,纵坡坡度、超高渐变率对滑水速度的影响趋于平缓;当降雨强度为20~80 mm·h-1时,双向四车道高速公路限速建议值为95.0~115.0 km·h-1,但不应大于其设计速度。   相似文献   

4.
基于粘性流体力学理论,按三维可压缩粘性流对具有流线型头部形状的TR08列车以及通过变化流线型头部纵剖面高度或流线型头部长度设计出的4种新头型列车的周围流场进行了数值模拟。为评估不同流线型头部外形的气动阻力性能,定义了表示其形状特征的整体长细比作为评估依据,综合考虑了流线型头部水平投影形状和纵向对称面投影形状对气动阻力性能的影响。通过对5种不同头型列车的模拟结果进行对比分析,得出了流线型头部外形对气动阻力性能影响的规律:随着流线型头部长度增加,气动阻力降低,而中间车阻力变化不大;在头部流线型长度相当的情况下,纵剖面轮廓线上凸的头车气动阻力比下凹的小,而尾车气动阻力大。计算得到的不同流线型列车的整体长细比大小排序与其气动阻力系数排序完全一致。分析结果表明,增加流线型头部长度是减小气动阻力的有效途径;整体长细比能较好地反映流线型头部对列车气动阻力性能的影响。  相似文献   

5.
为提高明线运行的高速列车气动性能,以头车气动阻力和尾车气动升力为优化目标,对高速列车头型进行了多目标自动优化设计.以某新型高速列车为原型,建立了包含转向架区域的高速列车参数化模型,提取了7个设计变量,分别控制鼻尖高度、端盖开闭机构顶端高度、驾驶室车窗高度、水平最大外轮廓线横向宽度、头型中部辅助控制线凹凸度、转向架区域横向宽度和隔墙倾角,并基于计算流体动力学理论,建立了高速列车空气动力学模型.应用该模型计算作用在列车上的气动力,通过多目标遗传算法自动更新设计变量,实现了高速列车头型的自动优化设计.对优化目标与设计变量的相关性进行分析,结果表明:驾驶室车窗高度和转向架区域横向宽度对头车阻力影响最大,头型鼻尖高度和中部辅助控制线凹凸度对尾车升力影响最大;优化后得到6个Pareto最优头型,与优化前的头型相比,头车阻力最多减小3.15%,尾车升力最多减小17.05%.   相似文献   

6.
为减少高速列车在运行中的气动阻力及噪声,提高列车运行效率、节约能耗,提升旅客乘坐舒适度,提出凸包非光滑表面减阻技术应用于高速列车领域。以CRH3型高速列车为研究对象,通过在车体的头部和尾部加设凸包来控制湍流特性,以达到减阻、降噪效果。首先,利用PRO/Engineer建立非光滑表面CRH3高速列车简化模型,采用ICEM CFD软件对模型划分非结构网格;其次,应用Fluent流体仿真软件基于标准模型对稳态运行速度为300 km/h时的列车进行仿真计算空气阻力;最后,利用宽频带噪声模拟气动性能良好的列车外表面噪声。结果显示:将间距为460 mm、半径为40 mm、高度为10 mm的凸包阵列结构布设在前挡风玻璃周围对减小气动阻力有积极作用,阻力值为3 715 N,减阻率为1.77%,而此参数凸包非光滑对列车裙板上缘有普遍降噪效果,最大降噪率为1.72%,而对车鼻处及车顶部则会增加噪声。研究表明,通过在头车加设凸包可以改变边界层湍流特性达到减小列车气动阻力及降低部分位置气动噪声的效果。  相似文献   

7.
为减小高速列车在运行过程中的气动阻力,提出一种基于边界层控制的减阻技术。以CRH3高速列车为研究对象,通过在车体表面加设球窝非光滑表面来控制边界层的湍流特性,实现列车运行减阻效果;通过PRO/Engineer三维软件建立了高速列车模型、参数化的球窝模型和计算域模型,在不影响研究效果的前提下,对高速列车模型进行简化处理以减少数值仿真计算周期;为使网格能够更好地贴合流线型车体和球窝非光滑表面,采用ICEM CFD软件对计算域进行非结构网格划分;在考虑列车表面粗糙度对气动阻力的影响工况下,应用商业流体软件FLUENT中的k-ε湍流模型对列车在300km·h~(-1)明线运行工况下的列车外流场进行数值仿真分析。仿真结果表明:只在尾车加设球窝非光滑表面更有利于列车减阻,且随球窝的半径、深度和阵列距离的增大,列车的气动阻力均呈先下降后上升的趋势;当球窝阵列距离为350mm,球窝半径为80mm,球窝深度为10mm时,球窝非光滑表面的减阻效果最好,此时气动阻力为2 220.4N,没有加设球窝非光滑表面的列车气动阻力为2 967.9N,减阻率可达25.19%。可见,采用球窝非光滑表面来改变边界层湍流特性是降低列车气动阻力的有效途径。  相似文献   

8.
通过数值方法研究了中国帽型瞬态风中高速列车在带风屏障的高架桥上运行时的气动性能,并与恒定横风场下的情况进行了对比分析.结果表明,恒定侧风下高速列车头车周围的流场结构最为复杂,气动载荷变化最显著,而瞬态风作用下高速列车气动性能表现出一定时滞性,列车时速为300 km/h时,风速从13.8 m/s递增到23.46 m/s再递减至13.8 m/s过程中,列车所受到的气动力及气动力矩均发生显著波动,这与稳定横风下列车受到的恒定侧向力明显不同.当列车以时速200~400 km/h运行时,车速每增加50 km/h,列车运行的最大阻力增长9%~10%,其他气动力也随车速稳步增长,气动力矩的增大幅度则随车速的增长有显著加大趋势.  相似文献   

9.
为研究时速380 km/h的新一代高速列车,北车长客公司设计了新一代头型,通过数值模拟技术,对比研究了新头型与原型车的气动特性,模拟结果表明:计算结果与风洞试验结果吻合良好,CRH380CL头型气动性能全面优于CRH3C头型;各项减阻措施中,头型优化、车底整流均有明显减阻效果,特别车底整流的减阻效果可以推广应用于长大编组情况.  相似文献   

10.
利用Creo软件建立了某型动车组头中尾3车编组和不同高度的路堤模型,通过Fluent软件模拟列车在车速分别为300和350 km·h-1,横风风速分别为17.10、20.70、24.40和28.40 m·s-1的环境下运行,将获取的高速列车气动力载荷施加到Simpack建立的动力学模型中,计算其动力学性能参数;深入分析了横风工况下高速列车在不同高度复线路堤背风侧运行时车体的压力分布、气流场结构、气动力与风致安全性,并重点探究了头车在不同运行速度和横风风速下的运行安全性。分析结果表明:在相同车速和横风环境下,随着路堤高度的增加,列车受到的侧向力整体呈增大趋势,尾车在横风作用下受到反向侧向力,头车所受侧向力最大,且升力持续增大,中间车所受升力相对较大,尾车所受阻力最大;横风环境下列车压力峰值点位于头车鼻尖处且向迎风侧偏移,各路堤高度工况下气流场结构基本相同,头车背风侧和底部转向架处有明显的涡流,但尾车处的涡流却在迎风侧,这可能是导致尾车反向侧向力的主因;脱轨系数、轮轴横向力、轮轨垂向力和轮重减载率均随路堤高度和横风风速的增大而增大,轮轨垂向力始终在安全限值内,当横风风速分别为24.40和28.40 m·s-1时,列车运行速度应分别低于350和300 km·h-1,以保证列车行车安全。   相似文献   

11.
为探究高速列车齿轮箱箱体振动特性和疲劳损伤, 应用小滚轮高频激励台架试验, 将滚轮表面加工成径跳量幅值为0.05 mm的13阶多边形, 可等效成20阶车轮多边形, 研究了某型齿轮箱箱体在不同垂向载荷与速度工况下的振动特性; 通过雨流计数法及Miner线性损伤法则, 分析了齿轮箱箱体单位时间应力累计损伤。研究结果表明: 受齿轮箱箱体共振影响, 不同垂向载荷与速度工况下, 高速列车运行速度为200 km·h-1时, 齿轮箱箱体各测点的垂、横向加速度均方根值均为最小; 当垂向载荷为23 t时, 大部分测点的垂、横向加速度均方根值均为最大; 齿轮箱箱体存在573 Hz的局部固有频率被激发共振, 其原因是试验速度为100 km·h-1时试验台发生共振, 以及试验速度为300 km·h-1时, 受到20阶多边形车轮转频约580 Hz的主频激扰; 车轮初始速度从0加速到200 km·h-1及从300 km·h-1减速至0的速度等级之间时, 齿轮箱箱体各测点的单位时间应力累计损伤波动较大, 其余速度等级段各测点的单位时间应力累计损伤波动很小; 单位时间应力损伤最大值出现在大齿轮箱齿面观察孔, 为3.72×10-10, 损伤最小值位于小齿轮箱轴承正上方, 仅为8.29×10-18。可见, 箱体共振、试验台减速运行、速度等级对齿轮箱箱体振动加速度影响较大; 非共振、试验台不减速运行、相同速度等级下, 垂向载荷对单位时间应力累计损伤影响甚微。   相似文献   

12.
为更深入全面了解高速列车系统动力学研究现状,综述了高速列车动力学性能对车辆运行稳定性、安全性和平稳性的影响,总结了列车安全评价方法和动力学试验方法在车辆动力学中的应用,基于轮轨间作用力,分析了轮轨磨耗对列车动力学性能的影响,概括了车-桥耦合模型、弓网系统以及列车空气动力模型在车辆系统动力学中的研究内容。分析结果表明:车轮异常磨耗会导致舒适性下降,合理的车轮镟修能有效降低车轮非圆化和车辆系统关键部件的振动,降低车内振动噪声,增加列车运行稳定性、安全性和平稳性;合适的轮对定位刚度和抗蛇行减振器的刚度和阻尼有利于提高列车蛇行运动稳定性和转向架运动临界速度;钢轨波磨严重时会导致钢轨扣件松动,缩短车辆构架和钢轨的使用寿命;通过合理的钢轨廓型打磨可消除曲线波磨,改善轮轨关系;行波效应对车辆安全性影响很大,与相同激励下的各项参数相比,车速为350 km·h-1、行波速度为300 m·s-1时的脱轨系数、轮重减载率和轮轨横向力都有所降低;横风作用下受电弓气动抬升力增大,影响接触网安全,增大弓头阻尼和弓头刚度可改善弓网受流特性。   相似文献   

13.
以中国某型高速列车为研究对象, 针对高速列车运行时主要噪声来源之一的转向架区噪声开展试验研究, 掌握其噪声特性和规律, 研究了不同类型和位置的转向架区噪声特性, 预测了不同速度下转向架区噪声水平和频谱特性; 基于一定的假设, 采用测试数据类比法对车头转向架区噪声成分进行分离。研究结果表明: 列车在200~350 km·h-1速度范围内运行时, 车辆主要噪声源集中在转向架区; 转向架区噪声表现为车头转向架区噪声大于车尾转向架噪声, 200 km·h-1运行时车头转向架区噪声大于车尾转向架区噪声约3 dB(A), 主要原因为在车头转向架处气流冲击导致的气动噪声大于车尾转向架处涡流导致的气动噪声; 中间动车转向架区噪声大于中间拖车转向架区噪声, 200 km·h-1运行时中间动车转向架区噪声大于中间拖车转向架区噪声约5 dB(A), 主要原因为相比于中间拖车转向架区噪声, 中间动车转向架区增加了牵引系统噪声; 随着运行速度的提高, 转向架区噪声在全频段内显著提高, 噪声峰值频率也会增大, 主要原因为车轮滚动噪声所致, 速度越大, 其轨枕冲击频率越高; 中间拖车转向架区噪声随速度增长的3次方关系符合轮轨噪声随速度的增长趋势, 对于车头转向架区噪声来说, 气动噪声成分更加显著, 并且随着运行速度的提高, 气动噪声所占比重呈增加的趋势。   相似文献   

14.
基于空气动力学理论分别推导了作用在接触线上的空气阻尼和脉动风气动载荷, 并将空气动力项添加至接触线波动速度公式中进行修正; 通过风洞试验和CFD绕流仿真得到了横风环境下的气动阻力系数, 分析了不同空气阻尼下接触线波动速度的变化规律; 基于AR模型和接触网的结构特性, 建立了具有时间和空间相关性的接触网脉动风场, 通过仿真计算分析了脉动风速和风攻角对接触线波动速度的影响。研究结果表明: 静风载荷引起的接触线空气阻尼很小, 当平均风速达到30 m·s-1时, 接触线空气阻尼仅为0.3, 接触线波动速度为549.1 km·h-1左右, 因此, 空气阻尼不会对接触线波动速度产生较大影响; 当来流风攻角为60°, 平均风速不大于10 m·s-1时, 脉动风下接触线波动速度标准差和最值差分别小于1和6 km·h-1, 此时接触线波动速度相对无风情况变化较小, 脉动风载荷对接触线波动速度的影响不明显; 当风速达到40 m·s-1时, 接触线平均波动速度较无风情况下降39.39 km·h-1, 且其标准差和最值差分别达到11.84和75.98 km·h-1, 此时接触线波动速度出现大幅下降与振荡, 最小波动速度低至474.16 km·h-1, 因此, 脉动风下风速越大, 接触线波动速度受脉动风载荷影响越显著; 当风速保持30 m·s-1, 来流风攻角为0°~30°时, 接触线波动速度标准差和最值差分别小于1和5 km·h-1, 此时脉动风载荷对接触线波动速度的影响较小; 当风攻角为90°时, 接触线波动速度标准差和最值差分别达到12.38和73.19 km·h-1, 此时接触线波动速度出现大幅下降与振荡, 最小波动速度低至472.91 km·h-1, 因此, 脉动风下来流风越偏于水平方向, 对接触线波动速度的影响越小。   相似文献   

15.
为研究强横风条件下轨道结构的力学特性,采用计算流体力学和有限元联合仿真,对轨道结构的受力和变形进行了分析. 首先采用SOLIDWORKS软件基于CRH380A型高速列车实际外形轮廓建模,然后通过FLUENT计算得到列车的气动特性,再与有限元软件ABAQUS联合仿真建立列车-轨道耦合模型;模型中完整地保留列车表面所受的气动力,解决了流固耦合中列车气动力的传递问题;最后基于建立的耦合模型,针对强横风作用下轨道结构的力学特性进行系统分析. 研究结果表明,当列车运行速度为350 km/h,风速从0变化到15 m/s时,钢轨背风侧处横向位移从0.177 mm增加到2.100 mm,增大了11.86倍,可见强横风条件下,要重点关注钢轨背风侧处横向力学特性;当风速超过15 m/s时,列车运行速度达到250 km/h,钢轨横向位移超出了最大允许值2.000 mm,表明长期的强横风作用将会导致轨道的几何形位发生改变,但此时轮重减载率和脱轨系数并未超出对应限值0.65和0.800. 因此,横风作用下不仅要考虑列车运行安全性指标,也要考虑轨道结构力学指标的变化.   相似文献   

16.
为了研究高速列车车轮偏心磨耗的形成机理,根据现场测试和多体动力学仿真结果,建立了高速列车车轮-钢轨系统有限元模型,采用瞬时动态仿真分析了车轮残余静不平衡对轮轨法向接触力的影响;对最高速度为250 km?h-1动车组列车的运营速度进行现场测试,计算了列车匀速运行区间的平均速度;基于摩擦功周期性波动引起轮轨非均匀磨耗的观点...  相似文献   

17.
中国高速列车气动减阻优化综述   总被引:3,自引:3,他引:0       下载免费PDF全文
研究了中国高速列车气动减阻优化进展,总结了典型部件的压力分布特性与各部件在列车气动阻力中的贡献占比,评析了惰行试验、风洞试验与数值模拟3种列车气动阻力研究方法,论述了和谐号、复兴号等系列列车头型气动性能的差异,阐述了高速列车头型气动减阻优化方法与技术,梳理了转向架区域、车端连接处、受电弓及导流罩等局部不平顺区域的气动减...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号