首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 479 毫秒
1.
短时交通流预测模型   总被引:2,自引:0,他引:2  
针对短时交通流变化周期性与随机性的特点,提出了新的混合预测模型,包含非参数回归模型与BP神经网络模型2种单项模型。非参数回归模型利用相关历史交通流数据,通过数据库匹配操作,确定预测结果,以充分体现交通流的周期稳定性。采用3层BP神经网络模型反映交通流的动态与非线性特点。采用模糊控制算法确定各单项模型的权重,并按不同权重有效组合成新的混合模型。采用西安市某路段30d的交通流量数据验证混合模型的预测效果。试验结果表明:该混合模型的平均相对误差为1.26%,最大相对误差为3.53%,其预测精度明显高于单项模型单独预测时的精度,能较准确地反映交通流真实情况。  相似文献   

2.
K近邻短时交通流预测模型   总被引:1,自引:0,他引:1  
为了准确预测道路短时交通流,构建了基于K近邻算法的短时交通流预测模型。分析了K近邻算法的时间和空间参数,提出4种状态向量组合的K近邻模型:时间维度模型、上游路段-时间维度模型、下游路段-时间维度模型与时空参数模型。以贵州省贵阳市出租车的GPS数据对几种K近邻模型进行了检验。分析结果表明:带有时空参数的K近邻模型具有更高的预测精度,其预测误差最小,平均为7.26%。基于指数权重的距离度量方式能更精确的选择近邻,其预测误差最小,平均为5.57%。与神经网络和历史平均模型相比,带有指数权重的K近邻模型具有更好的预测精度,平均预测误差仅为9.43%。可见,带有时空参数与指数权重的K近邻模型可作为道路短时交通流预测的有效手段。  相似文献   

3.
为满足个性化停车诱导需求,研究动态随机条件下有效停车泊位预测方法。利用C-C算法在求解非线性关系模型方面的优势,研究C-C算法与Elman递归网络技术的融合过程,采用小数据量法验证重构相空间的混沌特性,在此基础上研究动态随机泊位预测模型和求解算法。利用MATLAB对融合算法进行仿真实验分析。结果表明:模型预测结果与实际值一致性较好,最大相对误差、平均相对误差和平均绝对误差均小于线性假设的预测方法。说明C-C算法与网络技术的融合算法在动态随机泊位预测方面的有效性。  相似文献   

4.
高速公路动态交通流Elman神经网络模型   总被引:5,自引:0,他引:5  
为了提高高速公路交通流建模的精度,分析了离散的高速公路动态交通流数学模型,基于Elman网络原理,建立了回归神经网络交通流模型。回归神经网络的输入层、上下文层、隐含层和输出层的节点数目分别选为8、30、30和2,采用Levenberg-Marquardt算法对回归神经网络进行训练,并对一条5路段的高速公路进行仿真。结果表明:回归神经网络平均相对误差为8.683 7×10-5,最大相对误差为4.237 1×10-4,与BP神经网络和RBF神经网络相比较,Elman回归神经网络能更好地逼近交通流数学模型,真实地描述交通流基本特性,能准确地建立动态交通流模型,适应交通状况的变化。  相似文献   

5.
车辆轨迹数据蕴含着丰富的时空交通信息,是交通状态估计的基础数据之一. 为解决现有数据采集环境难以获得全样本车辆轨迹的问题,面向智能网联环境,构建了混合交通流全样本车辆轨迹重构模型. 首先,分析了智能网联环境下混合交通流的车辆构成及其轨迹数据采集环境;然后,提出了基于智能驾驶员跟驰模型的车辆轨迹重构模型,实现了对插入轨迹数量、轨迹位置和速度等参数的估计;最后,设计仿真试验验证了模型在不同交通流密度和智能网联车(connected automated vehicle,CAV)渗透率条件下的适用性. 试验结果表明:CAV和网联人工驾驶车(connected vehicle,CV)的渗透率为8%和20%时,该车辆轨迹重构模型在不同交通流密度下均能重构84%以上的车辆轨迹;重构轨迹准确性随着CAV和CV渗透率的增加而提高;当交通密度为70辆/km,且CAV渗透率仅为4%的情况下,模型也能重构82%的车辆轨迹.   相似文献   

6.
通过分析突发事故导致车道被占用时,道路通行能力的演变过程及交通流的 变化特征,将占道发生后车流与沙漏模型中颗粒物质运动类比,结合突发事件下交通流 中不同类型车辆的换道规律,提出了含概率崩塌各异性的改进沙漏模型.并结合元胞自动 机仿真理论,运用MATLAB进行仿真计算不同时刻的车辆排队长度,与实际数据对比, 该模型的平均相对误差为6.509 7%,验证了模型的可靠性.最后利用该模型预测不同车道 被占用和不同车流量的情况下车队长度达到特定长度所需的时间,进而探讨其分别对道 路通行能力的不同影响程度,为交通部门监管道路提供理论依据.  相似文献   

7.
针对交通流异常数据实时检测问题,提出一种基于改进孤立森林算法与K-Means++算法相结合的交通流异常数据检测模型。首先,使用交通流量和交通流速度数据构建交通流序列;然后,利用改进孤立森林算法,构建交通流数据的异常评分模型,并通过K-Means++算法构建滑动窗口计算出异常评分的阈值,以此来实现对交通流数据异常值的实时检测;最后,通过实例分析验证模型的合理性和可行性。研究结果表明:改进孤立森林算法与K-Means++结合的方法可以准确地确定异常评分的阈值进而检测出异常数据;该模型与仅考虑交通流流量的模型、传统孤立森林模型相比,AUC分别高出29.7%和5.3%,与其他常用的LOF、ABOD、OCSVM方法相比,AUC均有所提高。该模型准确率明显提升,在交通流异常数据检测中具有更好的适用性,能够为交通管理部门提供交通状况检测支持,提高交通管理效率。  相似文献   

8.
汪林  洪晓龙  马雷  于悦 《交通标准化》2012,(20):105-108
采用长春市实际调查数据对一种基于浮动车的路段行程时间多时间尺度预测方法进行仿真实验,结果表明基于该方法的交通流路段行程时间多时间尺度预测结果与真实值之间的平均绝对相对误差均小于7%,完全满足路段行程时间预测的精度要求。  相似文献   

9.
�������Ԥ��ģ�͵Ķ�ʱ��ͨ��Ԥ��   总被引:1,自引:0,他引:1  
在现代智能交通系统中,短时交通流预测是实现先进的交通控制和交通诱导的关键技术之一.为了提高短时交通流预测的准确性,本文提出了一种基于组合预测模型的短时交通流预测方法.一方面,根据当前的交通流数据来动态调整其对未来预测的影响;另一方面,通过对历史交通流数据的时空特性分析,利用数据挖掘领域的相关知识寻求与当前交通流特性最为相似的历史曲线,并以其为基础来获得预测值的匹配值;然后,将二者获得的信息进行融合,采用多种不同的组合方式来实现短时交通流预测.以厦门市莲花路口断面的交通流量为例,通过对仿真图像和数据的分析,得出各种组合方法的预测平均绝对相对误差均小于10%,能够较好地满足交通诱导系统的需求.  相似文献   

10.
为针对不同的交通流状态选取合适的干线协调控制策略,基于线圈、视频、微波获取的多 源实时交通数据,利用车队离散模型和卡尔曼滤波模型获取各转向流量,采用HCM(Highway Capacity Manual) 公式计算排队长度和延误,并根据干道交叉口排队长度界定干线交通流状态: 欠饱和、接近饱和、过饱和,从而选择相应的干线协调控制策略:在欠饱和状态下采用最大绿波 带法,在接近饱和状态下采用改进的多带宽协调模型,在过饱和状态下采用排队占比最小模型。 以青岛市香港中路为例,通过VISSIM 仿真软件对算法和策略进行仿真测试和评价,结果表明: 不同交通状态下的干线协调策略与原始控制方案相比,平均延误减少了19.4%,平均停车次数减 少了22.8%,平均排队长度减少了7.4%。  相似文献   

11.
为了提高交通流数据的准确性,从时间相关性、空间相关性和历史相关性三方面分析了交通流大数据的特点,建立了基础交通流时空模型。为保证数据处理的精度和速度,进行了时空模型的简化和标定。将时空模型简化,抽象为双层规划模型,上层模型通过控制时空相关参数的数量实现运算速度的优化,下层模型通过控制误差实现计算精度的优化。应用数据驱动法进行双层规划模型的求解,完成时空模型的标定。在时空模型的基础上,提出了交通流故障数据修正方法。以北京市某路段为例,对交通流故障数据修正方法进行有效性和可行性验证。验证结果表明:基于历史趋势、空间相关与时间序列的交通流故障数据修正方法的精度分别为79.65%、85.16%、89.84%,基于时空模型的交通流故障数据修正方法的精度为90.91%,具有较高的精度,而且可准确描述交通流大数据的特点。  相似文献   

12.
在现有交通资源下,利用交通信号的动态调控缓解交通拥堵是一种行之有效的方式。首先探讨了道路交叉口信号控制的空间和时间优化思路,在时间优化方面提出基于粒子群算法的信号配时优化模型。以昆明市学府路为例,在分析大量交通流数据的基础上,根据三相交通流理论,对交通状态进行划分并提出有针对性的控制策略。将信号配时优化模型应用于学府路3个相邻的关键交叉口。交通仿真和方案试运行结果显示,优化前后同步流状态下交叉口延误平均降低21.0%,车辆排队长度平均降低12.4%;堵塞状态下交叉口延误平均降低32.0%,车辆排队长度平均降低24.9%。这一结果表明该模型在道路交叉口信号配时优化中具有合理性和有效性。  相似文献   

13.
由于施工区的存在,城市道路信号交叉口通行能力下降,车流运行混乱.本文为 了从微观层面研究信号交叉口施工区交通流运行特性,以初始社会力模型为基础,首次提 出一种新的适用于交叉口交通流的社会力模型;通过对影响岛式施工区通行能力的因素 进行分析,设计出一套数据采集方案;利用实测数据并结合遗传算法对提出的模型进行标 定,使用统计学指标对标定结果展开评价.结果表明,提出的新模型仿真得到的交通量与 实测值平均绝对相对误差仅为0.028,能为信号交叉口施工区交通流模拟提供参考.  相似文献   

14.
完整的传感器数据是交通管理和控制的基础,但由于传感器自身或传输线路故障等原因,常常导致数据缺失,亟需对传感器缺失数据进行修复。鉴于此,以离散和连续缺失的线圈检测器交通流量数据为研究对象,构建基于RBF神经网络的数据修复模型。并将其结果与利用非线性回归模型、BP神经网络模型进行修复的结果相比较。RBF神经网络模型在离散缺失3 个数据、连续缺失3 个数据和连续缺失5 个数据情况下,平均百分比绝对误差分别为0.67%, 0.66%和1.33%,修 复值和实测值的总体相关性为0.992,修复精度优于非线性回归模型和BP神经网络模型。研究结果表明,RBF神经网络模型与其他方法相比可更精确地进行交通数据修复。  相似文献   

15.
为了分析自动驾驶车辆对交通流宏观特性的影响, 以手动驾驶车辆与自动驾驶车辆构成的混合交通流为研究对象, 提出了不同自动驾驶车辆比例下的混合交通流元胞传输模型(CTM); 应用Newell跟驰模型作为手动驾驶车辆跟驰模型, 应用PATH实验室真车测试标定的模型作为自动驾驶车辆跟驰模型; 计算了手动驾驶与自动驾驶车辆跟驰模型在均衡态的车头间距-速度函数关系式, 推导了不同自动驾驶车辆比例下的混合交通流基本图模型, 计算了混合交通流在不同自动驾驶车辆比例下的最大通行能力、最大拥挤密度以及反向波速等特征量, 依据同质交通流CTM理论建立了不同自动驾驶车辆比例下的混合交通流CTM; 选取移动瓶颈问题进行算例分析, 应用混合交通流CTM计算了不同自动驾驶车辆比例下的移动瓶颈影响时间, 应用跟驰模型对移动瓶颈问题进行微观数值仿真, 分析了混合交通流CTM计算结果与跟驰模型微观仿真结果之间的误差, 验证了混合交通流CTM的准确性。研究结果表明: 混合交通流CTM能够有效计算移动瓶颈的影响时间, 在不同自动驾驶车辆比例下, 混合交通流CTM计算结果与跟驰模型微观仿真结果的误差均在52 s以下, 相对误差均小于10%, 表明了混合交通流CTM在实际应用中的准确性; 混合交通流CTM体现了从微观到宏观的研究思路, 基于微观跟驰模型与目前逐步开展的小规模自动驾驶真车试验之间的关联性, 混合交通流CTM能够较真实地反映未来不同自动驾驶车辆比例下单车道混合交通流演化过程, 增加了模型研究的应用价值。   相似文献   

16.
提出了一种低秩矩阵补全的改进方法以研究道路交通量数据缺失值插补问题。应用基于核范数的低秩矩阵补全对交通量数据矩阵中的缺失值进行第1轮插补; 通过层次聚类算法将交通量数据划分为不同类别, 使得同类中的数据具有较强相关性, 异类中的数据具有较弱的相关性; 在每类样本上应用低秩矩阵补全得到缺失值的第2轮插补; 为了减少聚类数的影响, 提出最小二乘回归集成学习方法将不同聚类数下的插补结果进行融合, 得到最终的交通量数据插补结果; 用美国俄勒冈州波特兰市的交通量数据比较了5种方法的插补误差, 并分析了不同聚类数和距离度量方法的影响。研究结果表明: 在完全随机缺失模式下, 缺失率为10%~60%时, 其相对于传统的低秩矩阵补全模型的插补误差降低了5.93%~9.11%;在随机缺失和混合缺失模式下, 插补误差也分别降低了8.32%~9.55%和8.14%~9.20%;集成不同聚类数下的多个插补结果比单一聚类数下的插补误差降低2.62%~4.76%。可见, 在3种数据缺失模式下, 改进低秩矩阵补全方法降低了交通量数据的插补误差, 能有效提高插补后交通量数据的有效性。   相似文献   

17.
为了预测路口交通信号控制所需的转向交通流量,提出了基于改进BP(back-propagation)神经网络的路口交通流转向比预测模型,给出了相应参数的计算方法;采用自适应学习率和动量梯度下降法以提高神经网络的学习速度和算法的可靠性,并用调查数据对模型进行了检验.研究结果表明,与传统的平均值法相比,用所提出的模型,平均绝对相对误差减小约1%~3%.  相似文献   

18.
针对基本通行能力不能全面反映道路交通状况的缺点, 提出了城市道路随机化通行能力概念; 依据评价体系定义交通中断与持续中断, 量化了城市道路交通拥堵程度; 研究了现有通行能力估计方法, 利用乘积限与寿命分布列构造并估计了交通流分布函数; 结合交叉口各入口交通流数据特性改进传统连续交通流参数模型, 提出了基于交通流生存函数的交叉口通行能力计算模型; 将该模型估计结果与道路通行能力手册HCM2010中的模型估计结果和交叉口实测流量进行误差对比。分析结果表明: 生存函数模型计算出的中断、持续中断交叉口通行能力与HCM2010中的模型计算结果误差均值分别为0.162 1与0.116 4, 方差分别为0.029 0与0.015 2, 两者误差波动均较小; 提出的计算模型结果与实测较大流量相对误差分别为9.720%、3.822%和4.936%、4.779%, 统计意义下提出的计算模型相对误差为5.871%, 估计效果稳健; 城市道路交通中断次数、可接受中断概率、交通流、速度与道路通行能力之间存在生存函数乘积限对应关系, 研究交叉口的通行能力为7 632 pcu·h-1, 提出的计算模型估计结果更具有可靠性。可见, 提出的计算模型适用性较好, 特别在不同拥堵程度的城市道路交通区域, 通过可接受中断概率估计通行能力, 可为城市道路交通组织与管理部门提供优化目标、科学决策和易于接受的理论依据。   相似文献   

19.
针对高速公路各路段交通流信息差异较大这一现象,为提高交通流预测准确率,将注意力机制引入卷积神经网络,建立描述交通流时空关联特征的多核自适应网络(Multi-Kernel Adaptive Network,MKAN).首先对输入的历史交通流数据进行多分支卷积,获得不同尺度的交通流特征;然后根据输入信息自适应调整各卷积分支权重并对各分支多通道特征图进行加权融合;最后根据融合特征图,利用多层感知机预测下一时段交通流.基于加州交通运输部性能测试系统中的高速公路交通流数据设计实验进行模型验证和对比分析.实验结果表明,在大多数站点,MKAN模型的预测均方根误差和平均绝对误差低于长短期记忆网络、门控循环单元、K近邻算法和支持向量回归模型,对140号站点进行全天交通流预测,在1d内的各时段,MKAN模型预测绝对误差均小于其他对比模型;相比于单核卷积神经网络,在绝大多数站点,MKAN模型预测结果的均方根误差和平均绝对误差降低7%以上,对31号站点进行全天交通流预测,在1d内的大多数时段,MKAN模型预测绝对误差小于其他单核卷积神经网络.实验证明,多核自适应网络可有效提高交通流预测准确率,其预测效果优于部分传统预测模型和单核卷积神经网络.  相似文献   

20.
交通流混沌判定是研究交通流混沌的基础性关键问题.改进型替代数据法能够避免直接判定混沌方法的局限性.交通流仿真软件通过参数的变化容易获得希望得到的交通流状态,可以较全面方便地验证方法的有效性.因此对改进型替代数据法的算法实现进行了改进,利用某交通流仿真软件生成了一些不同情况下的交通流时间序列,应用改进型替代数据法对其进行了混沌判定,并与功率谱方法的判定结果进行了比较.实证结果表明,新的算法实现提高了计算速度,改进型替代数据法是判定交通流混沌的一种有效方法.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号