首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
南宁英华大桥为45 m+410 m+45 m单主缆钢箱梁悬索桥。该桥设置单主缆,主缆采用预制平行高强钢丝索股结构。全桥共布置40对吊索,均采用预制平行钢丝束。主索鞍采用全铸造结构,塔顶设有格栅底座。该桥采用散索套散开主缆,通过结构优化,有效解决了采用传统散索套所带来的索股不稳定及难以架设的技术难题。主缆锚固采用钢拉杆锚固系统,锚固方式为无粘接后锚承压式。主塔为曲面桥塔,采用文物"羊角钮编钟"作为造型元素,下塔柱为预应力混凝土结构,上塔柱为钢结构。主梁采用扁平流线型钢箱梁,全宽37.7 m,中心高3.5 m。锚碇均为重力式锚碇,由于本桥为单主缆结构,因此两岸均只在引桥正下方设1个锚碇。  相似文献   

2.
重庆几江长江大桥主桥为176m+600m+140m的单跨悬吊钢箱梁悬索桥。全桥共布置2根主缆,主缆采用预制平行钢丝索股结构、新型缠包带除湿防护体系、预应力钢束锚固系统。主缆与加劲梁间共设49对吊索,吊索采用预制平行钢丝束股,其上、下端连接方式均为销接式。主索鞍鞍体采用全铸型结构,散索鞍鞍体采用铸焊结合的结构。加劲梁采用流线型扁平钢箱梁,梁高3m、宽33m。南锚碇采用重力式锚碇,沉井基础;北锚碇位于软岩区,采用型钢加劲复合式隧道锚碇。桥塔采用钢筋混凝土框架结构,基础采用分离式承台钻孔桩基础。  相似文献   

3.
重庆寸滩长江大桥主桥为250m+880m+250m的单跨简支钢箱梁悬索桥。该桥设2根主缆,主缆采用预制平行高强钢丝索股结构。全桥共布置57对吊索,吊索采用预制平行钢丝束,与索夹采用销接式连接方式。主索鞍为全铸式结构,鞍底设置座板作为滑动副。散索鞍为底座式结构,底部设置柱面钢支座。主缆锚固系统采用型钢锚固系统。加劲梁采用流线型扁平式封闭钢箱梁,梁高3.5m,宽42m。南、北锚碇均为重力式锚碇,现浇扩大基础,锚体在平面均呈U形。桥塔为钢筋混凝土门式框架结构,两塔柱竖直布置,基础为分离式承台桩基础。  相似文献   

4.
悬索桥主缆钢丝或索股绕过主索鞍、散索鞍、锚靴等固定半径的转向装置时会产生弯曲应力。AS法特有构件锚靴的索槽半径更小,所产生的弯曲应力会接近甚至超过钢丝的屈服应力。分析了钢丝在索槽内的受力变化情况,并将钢丝的本构关系简化为双折线强化模型,按照屈服破坏准则和强度准则两种方法分析了锚靴半径对缆索承载能力的影响。结果表明,按照屈服准则时,钢丝或索股绕过锚靴等转向装置后的抗拉能力没有降低;按强度准则时,当锚靴索槽底面弯曲半径与钢丝直径之比不小于70时,钢丝或索股的破断力下降不足3.5%。考虑到缆索钢丝分项系数为1.85,因此锚靴处的小弯曲半径引起的弯曲应力对缆索承载能力的影响很小。  相似文献   

5.
鹦鹉洲长江大桥钢-混结合梁悬索桥方案研究   总被引:2,自引:1,他引:1  
鹦鹉洲长江大桥初步设计推荐其主桥采用200 m+2×850 m+200 m三塔四跨悬索桥方案,综述该方案总体设计.主缆束股采用127φ5.1 mm的镀锌高强钢丝,主缆应力验算安全系数取2.2.主梁采用四跨简支钢-混结合梁,以避免桥塔处主梁出现较大负弯矩.主梁支承体系采用纵向半漂浮体系,以降低主梁梁端位移.中塔采用钢-混组合结构,其上段钢塔柱采用弯矩较小、施工较简单的纵向人字形塔柱.南、北两侧锚碇均采用重力式结构,北锚采用沉井基础,南锚采用地下连续墙方案构建锚碇基础.散索鞍采用全铸鞍体与特制大吨位柱面钢支座相结合的结构.  相似文献   

6.
黄安明  杨博  陈龙  谢俊  陈鑫 《中外公路》2024,(1):133-140
AS法(空中纺线法)施工的悬索桥,主缆各索股钢丝套接锚固在两岸的锚靴上,锚靴通过拉杆将索股力传递给锚固系统。锚靴与主缆钢丝相互作用后锚靴的承载能力、钢丝小曲率弯折后的应力状态、拉杆安装精度对锚固可靠性的影响均需要定性定量的研究以及试验验证。该文以AS法架设主缆悬索桥——阳宝山特大桥为背景,对锚靴及索股进行了6 150 kN设计荷载下拉杆无偏转状态、拉杆相对于锚固垫板在水平向、竖直向和45°向偏转0.5°共4种工况下的试验研究。结果表明:锚靴承载能力满足设计要求,钢丝小曲率弯折后无异常变形和破坏;锚靴及拉杆构造连接可靠,装配性好,构造采用球面垫圈结构可以保证拉杆具备约1°偏心调节能力,为保证锚靴及拉杆构造设计使用要求,建议拉杆与索股轴向安装控制精度保证在0.5°以内。  相似文献   

7.
白洋长江公路大桥主桥为主跨1 000m的双塔单跨钢桁梁悬索桥,北岸边缆跨度276m,南岸边缆跨度269m。该桥采用塔连杆+柔性中央扣支承体系,通过塔连杆的转动满足加劲梁纵向位移与转动要求。桥塔采用混凝土门形结构,北塔高142.5m,南塔高151m,基础为分离式承台+群桩基础。钢桁梁全宽36.7m,高7.5m,采用2片主桁,华伦式桁架,主桁与桥面系分离,桥面系采用钢-混组合桥面系。充分利用长江优质航道资源及桥下水深条件好的优势,钢桁梁采用30m大节段吊装。主缆采用1 860MPa锌铝合金镀层高强钢丝,吊索采用1 960MPa镀锌钢丝绳。主索鞍、散索鞍鞍体采用铸焊结合结构。主缆采用型钢锚固系统,白洋侧锚碇采用重力式嵌岩锚,宜都侧锚碇位于富水巨厚卵石层中,国内首次采用浅埋扩大基础。  相似文献   

8.
葫芦口大桥主桥为(158+656+145)m的单跨双铰钢桁梁悬索桥。该桥设2根主缆,主缆采用预制平行高强钢丝索股结构。全桥共布置71对吊索,吊索采用预制平行钢丝束,与索夹采用销轴连接方式。主索鞍为全铸式结构,鞍底设置滑动副。散索鞍为底座式结构,下设滚轴支座。主缆锚固系统采用型钢锚固系统。加劲梁采用钢桁梁,桁高4.5m,宽17m,采用钢混组合桥面系。两岸锚碇均采用重力式锚、现浇扩大基础,其中巧家侧锚碇采用明挖嵌岩基础。桥塔为钢筋混凝土门式框架结构,塔柱竖直布置,基础采用直径2.5m的钻孔灌注桩。采用有限元软件BNLAS及MIDAS对该桥进行计算分析,结果表明该桥的静力、动力特性均满足规范要求。  相似文献   

9.
虎跳峡金沙江大桥为主跨766 m的独塔地锚式悬索桥。由于取消了香格里拉岸的桥塔,中跨主缆仅通过索鞍支承、转向及散索后锚于锚碇,该索鞍不仅需具备主索鞍的支承功能,还需具备散索和纵向活动功能,其功能及受力要求均较高。结合该桥建设条件,提出一种主要由鞍体、辊子组、承板、格栅等构成的新型复合索鞍,其中,鞍体承担支索、转索和散索的作用;辊子组连接于鞍体与支墩之间,当中跨主缆缆力发生变化时,辊子发生滚动;承板布置在辊子组的顶面和底面,与辊子组接触;格栅预埋在支墩顶面,将索鞍传递的竖向荷载均匀分布到混凝土中。经有限元和试验验证,新型复合索鞍鞍体最大等效应力为151.8 MPa,辊子与承板之间的最大接触应力为578 MPa,受力满足设计要求。  相似文献   

10.
普立特大桥位于云南省宣威市,跨越典型的山区V形峡谷,主桥为主跨628m的双塔单跨钢箱梁悬索桥,主缆采用预制平行钢丝束股,由91束91根Φ5.1mm镀锌高强钢丝组成。结合现场实际情况,宣威岸采用重力锚,普立岸采用隧道锚,锚体均按"分层浇筑、分层支撑、分段接管、实施监控"的方案实施。隧道锚倾角大,开挖采用控制爆破技术减少对周边围岩的扰动,出渣采用有轨运输方式。主缆先导索牵引采用火箭抛掷施工方法,主缆架设采用PWS法施工。主梁为具有良好抗风性能的扁平流线型钢箱梁,钢箱梁架设采用缆索吊机旋转架设法施工。  相似文献   

11.
天津富民桥主桥为单塔空间索面自锚式悬索桥,主缆在主跨采用三维曲线线形,吊索在横桥方向为倾斜布置.主缆初张力对该桥空间缆索体系施工方案有根本影响.重点探讨主缆初张力对该桥主索鞍与散索套安装、主缆架设、调索与体系转换等施工环节的影响问题.  相似文献   

12.
西堠门大桥主缆除采用重防护涂装体系外,还采用"先缠丝,后铺装"施工技术。根据相关试验成果,确定施工中缠丝导入张力不小于2.3 kN。采用ZLC1000型缠丝机进行主缆缠丝。为方便主缆排水、减少主缆钢丝暴露外界时间,缠丝顺序为:先边跨后中跨,边跨从锚碇向桥塔方向进行,中跨则从桥塔向跨中方向推进。通过缠丝机将4 mm钢丝均匀紧密地缠绕在已涂覆底漆与不干腻子的索夹间主缆上,间隔一定距离以铝热焊剂焊接缠绕钢丝以保持其缠丝导入力,钢丝两端则固定于索夹。  相似文献   

13.
福州鼓山大桥关键技术研究   总被引:2,自引:1,他引:1  
鼓山大桥为主跨235 m的独塔空间索面自锚式悬索桥,加劲梁为钢-混凝土混合梁,桥面全宽42 m,综述该桥结构设计、科研与试验及施工关键技术。该桥加劲梁在桥塔处设置纵向阻尼器,主索鞍整体铸造,滑动装置采用座板而不采用格栅,散索套及散索鞍采用单向活动支座支承。进行主缆线形与吊索张拉、主缆锚固区受力、抗震性能、钢桥面铺装及全桥模型试验等专题研究,研究表明:该桥设计理论正确,两跨吊索同时张拉较合理,锚固区应力分布复杂,阻尼器作用显著,桥面铺装采用改性沥青较合适,剪力滞效应对结构影响不大。该桥采用"先梁后缆"的施工顺序,钢箱梁采用顶推法施工。  相似文献   

14.
广州猎德大桥是一座边跨散索套底部无支承的空间主缆自锚式悬索桥,若按由主塔向锚跨的常规顺序张拉边跨吊索,则边跨散索套将产生较大的竖向位移,引起主缆索股在锚管口的弯折。针对此问题,根据该桥体系转换应遵循的原则,给出体系转换的方案,即主跨吊索按常规顺序张拉的同时,交替张拉边跨吊索。边跨吊索张拉顺序为:先张拉散索套附近第1根满足构造条件的吊索,然后由该吊索向散索套逐步张拉,再由该吊索向主塔逐步张拉。最后给出该类桥体系转换的实施要点。猎德大桥体系转换实施效果良好,高效高精度地达到了预期目标。  相似文献   

15.
介绍了鹅公岩大桥主缆索股预制钢丝束编缆(PPWS)制作方法和钢丝、索股、热铸锚的一些技术要求,对影响索股长度制作精度的各种因素进行了分析和计算,提出了索股制作、架设过程中尚需解决的一些技术问题.  相似文献   

16.
南京仙新路长江大桥主桥为跨径1 760 m的单跨钢箱梁悬索桥,主缆垂跨比1/9,边跨跨径580 m,边中跨比0.33。该桥上、下游各设1根主缆,单根主缆由169股127?5.4 mm镀锌铝高强钢丝索股组成,采用PPWS法施工,钢丝标准抗拉强度2 100 MPa。吊索与索夹采用销接式结构,跨中设置柔性中央扣索,短吊索设置关节轴承。主索鞍采用宽鞍槽单纵肋铸焊结合构造,散索鞍采用底座式全铸结构。加劲梁采用扁平流线型封闭整体钢箱梁,总宽31.5 m,梁高4 m,顶板与U肋之间采用双面埋弧全熔透焊接。桥塔采用门形混凝土结构,总高277.3 m,其上横梁为预应力混凝土结构,外包N字造型钢结构;桥塔基础采用直径2.8 m钻孔灌注桩。南锚碇采用外径65 m圆形地下连续墙基础;北锚碇采用沉井基础,平面尺寸70 m×50 m,高50 m。对结构进行静力分析及抗风性能理论和试验研究,结果表明:结构强度、刚度均满足规范要求;在加劲梁上设置0.67 m高中央稳定板、两侧风嘴处设置1 m宽水平稳定板后,大桥的颤振、涡振等抗风性能均满足要求,且具备一定的阻尼储备。  相似文献   

17.
宝鸡联盟路渭河大桥主桥为(50+95+200+95+50)m的自锚式悬索桥,半飘浮约束体系。桥面总宽29m,人行道置于吊索外侧。主缆为空间线形,由19股61Φ5.1mm预制平行高强钢丝索股组成,抗拉强度1 770MPa。吊索采用预制平行钢丝束,单根吊索由151Φ5mm镀锌高强钢丝组成,抗拉强度1 670MPa。吊索与主缆采用销接式连接。主梁为混合梁,加劲梁采用钢边主梁,锚梁采用预应力混凝土梁。桥塔为有上、下横梁的框架式混凝土结构,外观装饰为哥特式欧式风格。桥址处地震烈度高,边墩和锚墩位置设置双曲面摩擦摆减隔震支座,桥塔位置设置纵向粘滞阻尼器。主桥采用"先梁后缆"的施工顺序,加劲梁采用滑移法施工。主索鞍采用预偏技术施工,有效控制桥塔弯矩,保证结构安全。  相似文献   

18.
介绍了鹅公岩大桥主缆索股预制钢丝束编缆(PPWS)制作方法和钢丝、索股、热铸锚的一些技术要求,对影响索股长度制作精度的各种因素进行了分析和计算,提出了索股制作、架设过程中尚需解决的一些技术问题。  相似文献   

19.
悬索桥主缆丝股锚固力的计算方法探讨   总被引:3,自引:1,他引:3  
悬索桥主缆丝股的锚固力的计算是悬索桥施工控制的一项重要内容。悬索桥主缆锚固力的计算有几种方法,各种方法有其优缺点和适用范围。对于滚轴式散索鞍应采用锚跨与边跨的丝股张力在滑动斜面上的投影合力为0为条件计算锚跨张力;对摇轴式散索鞍,应采用边跨和锚跨在散索鞍切点处的张力对摇轴中心合力矩为0为条件计算锚固力。实际的施工控制中,对这2种散索鞍,可分别以上述的总合力或合力矩为条件,所有丝股设定一个完全相等的锚固力,该固定力近似等于按2种精确方法计算的各丝股锚固力的平均值。  相似文献   

20.
刘家峡大桥主桥为单跨536 m 的桁式加劲梁双索面悬索桥,单根主缆采用44股127根φ5.2 mm 镀锌高强钢丝,设计空隙率在索夹处取18%,在索夹外取20%,主缆索夹由2个半圆形铸钢结构通过高强度螺栓上下对接紧箍在主缆上,接缝处嵌填橡胶防水条。索夹的抗滑移性能是影响悬索桥主缆正常使用的一个主要因素。为了解该桥索夹抗滑移性能是否满足设计要求,在大桥主缆架设完紧缆后,在主缆上同时安装制动索夹、试验索夹以及推力千斤顶,利用千斤顶模拟索夹下滑力,对计算确定的最不利索夹进行顶推试验,测试索夹抗滑移摩阻系数和索夹内、外部空隙率。试验结果表明:实测索夹抗滑移摩阻系数为0.213,大于设计要求的0.15,满足设计要求;实测索夹内、外部空隙率分别为17.6%、18.4%,满足设计要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号