首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 510 毫秒
1.
利用城市轨道交通平峰期冗余运力进行客货混合运输是缓解地面交通拥堵和节能环保的重要手段。本文在客货混合运输模式下,研究城市轨道交通列车时刻表和流量控制问题。首先,以列车发车时间、列车车厢布置和客货需求分配给列车车厢的数量为主要决策变量,以最小化乘客和货物的等待时间以及列车车厢能耗为目标,考虑流平衡、列车容量限制及时刻表等约束,构建城市轨道交通客货混合优化模型。其次,为验证模型的有效性,以上海地铁17号线为例进行实证研究,借助优化求解器Gurobi求解模型。结果表明:本文所提协同优化方法具有良好的优化效果和计算效率,与逐一求解法对比,乘客和货物延误数量可显著降低;协同优化可减少乘客延误人数21.92%,货物延误数量9.73%,乘客和货物的平均等待时间减少35.88%和25.56%,碳排放量减少1.7%。该方法可以提高地铁满载率,减少地铁平峰时期的运力浪费,同时提高轨道交通运营安全性和运输效率。  相似文献   

2.
传统的客流控制大都以减少乘客等待时间或者客运周转量最大为目标,缺乏对于安全性的考虑.保证乘客等待时间在可接受范围以内,以客流聚集预警值最小为目标,提出了以安全为导向的地铁高峰时段多车站客流协同控制模型,并成功将其转化为单目标线性整数规划模型,借助CPLEX优化器可直接进行求解.以某地铁线路高峰客流数据为例,通过计算得出,相对于以乘客等待时间最小为目标的客流控制方法,本文方法在保证乘客总等待时间仅增长1%的情况下,能够将所有车站客流聚集控制在安全范围以内,大大提高了客运组织安全性,为实际客流控制提供了很好的依据.  相似文献   

3.
在线路客流控制中,需同时考虑各个车站控流方案的可执行性与协同性. 采用 Fisher 最优分割法确定合理客流控制时段,基于此建立以乘客总等待时间最少和旅客周转量最大为目标的线路客流协同控制线性规划模型. 基于成都地铁2 号线AFC数据进行实验,针对协同控流与非协同控流方案,以及不同客流控制时段划分方案下的协同控流方案进行对比实验. 算例中:协同控流方案在旅客周转量下降约1.0%的情况下,乘客总等待时间减少约 56.7%;基于Fisher 最优分割法确定的时段划分方案中协同控流方案在乘客总等待时间方面最优,并具有很好的可执行性.  相似文献   

4.
在线路客流控制中,需同时考虑各个车站控流方案的可执行性与协同性. 采用 Fisher 最优分割法确定合理客流控制时段,基于此建立以乘客总等待时间最少和旅客周转量最大为目标的线路客流协同控制线性规划模型. 基于成都地铁2 号线AFC数据进行实验,针对协同控流与非协同控流方案,以及不同客流控制时段划分方案下的协同控流方案进行对比实验. 算例中:协同控流方案在旅客周转量下降约1.0%的情况下,乘客总等待时间减少约 56.7%;基于Fisher 最优分割法确定的时段划分方案中协同控流方案在乘客总等待时间方面最优,并具有很好的可执行性.  相似文献   

5.
近年来,随着城市化进程的加快,面对巨大的城市人口出行和环境污染的压力,优先发展公共交通己成为解决城市交通问题的主要途径。列车开行方案的研究是城市轨道交通发展的重要组成部分,它规定列车在沿途车站的到发时刻,是协调各部门工作、保证列车运行安全和旅客服务质量的前提和基础。从地铁部门成本最小化、乘客满意度最大化两个方面建立城市轨道交通列车开行方案优化的双层规划模型,主要从列车追踪间隔、列车定员、乘客候车时间和乘客车次选择4个方面进行约束,对列车编组数量、列车开行对数、列车发车时刻、列车交路方式、乘客数量、乘客车次选择和乘客等待时间7个方面进行决策,以验证模型的可行性和有效性。  相似文献   

6.
对车站换乘走行时间的估计是分析成网条件下地铁线路间列车合理衔接,减少乘客总换乘等待时间的前提.基于数理统计方法对地铁车站换乘走行时间规律进行研究,设计地铁车站换乘走行时间规律的抽样调查方法,同时采用正态分布和对数正态分布函数对地铁车站换乘走行时间分布进行描述,并利用极大似然估计法对其中的参数进行估计.最后,以重庆地铁两路口换乘站为例,对所提出方法的实际可行性进行验证.  相似文献   

7.
正列车停站过程是地铁运行中的一个必要环节,对地铁运行效率具有较大影响。为了提高地铁运行效率,有必要展开城市轨道交通停站时间影响因素分析及优化研究。目前,国内外在城市轨道交通停站时间影响因素分析方面取得了一定研究成果。从1975年,外国专家Kraft首次指出列车停站时间主要受上下车乘客数与列车车厢内拥挤度影响以后,研究发现地铁停站时间不仅受到上下车乘客数量的影响,而且与列  相似文献   

8.
本文提出基于铁路列车到达时变性的区域轨道交通运能匹配优化方法,通过调整地铁首班车发车时间以及发车时间间隔的大小,通过最小化铁路换乘地铁和地铁内部换乘的总换乘等待时间为优化目标,提出区域轨道交通网络运能匹配优化方法。以成都市区域轨道交通网络为例,计算最优的首班车发车时刻和每条地铁线路的发车间隔,优化后路网的总换乘等待时间减少了17 002 577.37s,人均换乘等待时间减少了6.55%,铁路换乘地铁的乘客平均换乘等待时间减少了8.92%, 77.08%的乘客换乘时间缩短。  相似文献   

9.
正众所周知,为了缓解客流压力,及时运送乘客到达目的地,地铁线路在早晚高峰期间均是最大运量投入运营,行车间隔密集。因此,在高峰期间,一列地铁车辆延误可能引发蝴蝶效应,导致更长时间和更多地铁线路发生延误。根据上海地铁网络运营故障统计,约4%的长时间列车延误是由高峰期间大客流引起,可见高峰期间及时输送客流,避免乘客滞留站台至关重要(见图1)。地铁建成后,地下车站几乎无法改造。当客流需求  相似文献   

10.
《轨道交通》2008,(9):14-14
目前上海最大的一座地铁车站——浦江南浦站,正在紧张施工。作为轨道交通7号线与轨道交通12号线换乘站点,这座地铁车站将依靠乘客零换乘、2条线路列车互调支援、庞大的地下空间等人性化设计,带动周边地区综合开发。  相似文献   

11.
为了精细化掌握城市轨道交通故障对乘客出行的影响,对等车、上车和下车过程的客流与列车交互状态进行抽象,建立了站台等待乘客、车内乘客等客流分布数据的计算方法,设计了动态客流仿真算法及乘客服务水平评估指标. 以实际线路为背景,以正常运营场景为参照,计算和评估了故障场景下的客流时空分布,分析了乘客等待时间对列车和站台上客流分布及出行时间的影响. 算例结果表明:具体故障下乘客多等待能通过避免离开而减少部分出行时间,但与正常场景相比,列车满载率高、站台人数多的现象增多;最大等待时间15 min与9 min相比,离开人数减少77.0%,带惩罚的总旅行时间降低超过10.0%,留乘发生率一样,但最大留乘人数增加94.1%,最大等待人数增加29.6%.   相似文献   

12.
为快速疏解城轨线路上车站的大客流,减少乘客的等待时间,研究了备用车投放问题; 在考虑列车追踪关系、列车停站时间等约束的基础上,建立了综合备用车投放时机确定、投放最佳车站选择和时刻表动态调整的多目标优化模型; 界定了城轨备用车开行条件,提出了城轨备用车投放时机的定量化判定方法; 用0-1变量表征车站是否具备备用车投放条件,并将其作为模型输入,以减小大客流车站乘客等待时间和降低运行图偏离时间(延误时间)为优化目标,构建了备用车投放的混合整数非线性规划模型,该模型通过比较不同的备用车投放方案效率得到最佳的备用车投放车站和后续开行计划; 为同时求解0-1变量与连续变量,设计了带惩罚函数的改进粒子群优化算法求解模型。研究结果表明:该方法可对所有符合备用车开行条件的车站制定投放方案,并进一步筛选出最优的备用车投放车站,最多可减少1 318 209 s的乘客等待时间,优化效率为21.9%,且改进的粒子群优化算法对混合整数非线性规划模型的适用性较好; 相比于既有城轨线路列车运行调整和时刻表优化方法,本文提出的方法在应对突发大客流的备用车投放时机上做出了更加定量化的判断,优先考虑了大客流车站的疏解能力和效率,并优化了备用车与后续列车的开行方案,可以有效解决高峰时段车站大客流问题。   相似文献   

13.
基于客流时空分布规律,考虑列车平均发车间隔、运行时间、最大载客量等约束条件,将列车在车站的停站时间与上、下车客流量相关联,建立城市轨道交通高峰时段基于非均匀发车间隔的大小交路时刻表优化模型,对乘客平均旅行时间及列车发车间隔平均偏离值进行协同优化。以某城市轨道交通线路实际运营数据验证模型的有效性。结果表明,优化后乘客在各个车站平均等待时间较优化前减少幅度为0.4%~13.1%,其中全线客流量较大的第7、8、9站优化幅度较为明显,分别为 11.7%、13.1%、11.9%。优化后列车在各个车站最大满载率较优化前降低幅度为1.8%~8.5%,且所有车站站台均无滞留乘客,体现了优化后列车运输能力与客流需求的良好匹配。灵敏度分析讨论了目标函数权重系数及列车平均发车间隔值对模型的影响,表明本模型具有良好的可用性及稳定性,能够为城市轨道交通列车时刻表优化提供参考。  相似文献   

14.
开行大小交路列车是应对城市轨道交通线路客流不均衡问题的有效方式,针对大小交路列车运行组织方案优化问题,提出以车辆运力与客流间的供需关系为约束,以综合减少乘客总候车时间以及地铁车辆总运营里程为目标,建立非线性混合整数规划模型,通过决策小交路折返站的位置、小交路区段的平均车头时距、大小交路列车开行比例以及大小交路列车编组数,实现乘客方和地铁运营方的综合效益最优,并讨论列车运行组织方案中不同运行参数对双方的影响,为大小交路列车运行组织方案的设计和优化调整提供参考。  相似文献   

15.
基于灵活编组运营组织模式特点,综合考虑客流与货流之间的竞争关系,以列车编组类型及列车发车间隔为主要决策变量,以乘客等待时间和运营公司运营成本极小化为目标,构建灵活编组条件下轨道交通客货协同运输方案混合整数线性规划模型,得到系统优化的列车编组方案、 运行图和客货协同运输方案。当给定编组类型集合且没有货流输入时,本文所构建模型即可退化为传统的固定编组模式下客流运输优化模型。以北京地铁八通线为例设计数值实验,验证了所提模型的有效性,所有实验均由VB语言调用CPLEX优化软件进行求解。算例结果表明,相较于固定编组模式的单一客流运输,本文方法可在乘客平均等待时间仅增加1.1 min的情况下,降低 约41.86%的运营成本,大幅度增加运营收益,更好地实现运输服务质量和运营成本的均衡。  相似文献   

16.
轨道交通供给侧的计划性与需求侧的时变性相互冲突,为更好地协同供需双方,提出了需求响应机制下城市轨道交通列车运行计划的优化方法,包括出行预约和需求响应2个环节;建立了需求响应与列车运行计划协同优化模型,以最小化乘客出行成本和列车运行成本为目标,重点关注乘客由于预约行为产生的延误时间成本;考虑列车运行、运输能力、编组情况、客流分布等因素,设计了基于乘客优先级的自适应大规模邻域搜索算法,外层优化列车运行计划,内层优化客流分配方案,最终实现客流的供需匹配;以北京地铁八通线为例,按照需求响应机制对该线路全天的需求处理与运输组织进行数值试验,并对试验结果从车底运用、乘客等待时间和满载率分布三方面进行分析。研究结果表明:该优化方法可使开行的列车数降低13.8%,同时采用多编组模式,使用车辆数减少了29.8%,这能够有效压缩列车走行公里数,削减企业开支;能够在保证乘客基本出行的前提下,最高可将乘客平均在站等待时间缩短约35.3%,并且预约比例的提升对等待时间的削减效果明显;优化后的运行计划能控制列车满载率维持在设定水平,有效降低人员密度,避免人群大规模聚集,对城市轨道交通疫情的有效防控做出有益探索。   相似文献   

17.
为了确定城市轨道交通车站站台行人交通特性,以北京市地铁2号线西直门站站台视频资料为基础,观测站台区域行人交通行为,分析行人速度、候车位置分布、密度时空分布特性。分析结果表明:与街道环境相比,站台区域行人自由流速度均值偏高,且站台与楼梯邻接区域行人速度随密度的增大下降较快;车辆到达之前行人候车呈队列形式,车辆到达后呈扇形分布在车门两侧;站台区域行人密度时空分布受轨道交通车辆班次影响,表现出规律性波动变化。  相似文献   

18.
城市轨道交通作为居民主要出行方式,为建设更舒适的出行环境,提高乘客在站厅的进出效率,减少乘客拥堵现象。本文以长沙地铁万家丽为原型,研究已经开通运营的换乘车站,在建筑面积固定的情况下,如何根据既有设备布局高效组织激增的进出站和换乘客流。基于万家丽近期和远期客流数据,同时重现排布验票闸机、楼梯的进出方向和位置,利用仿真软件充分验证方法的可行性和有效性。结果显示,新的排布方式可满足实际性需求,使客流组织方案与站内空间布局更加协调,一定程度上消除了乘客拥堵现象。基于仿真结果和理论计算结果对比发现,行人走行时间增加量随进站客流量的增加呈现先增后减再增的趋势,该趋势可为未来车站行人走行时间预估提供一定的理论基础。  相似文献   

19.
针对城市轨道交通突发列车延误问题,统筹考虑行车秩序的恢复和乘客出行体验,提出列车调整与客流控制协同优化方法。首先分析延误条件下城轨列车调整和客流控制的措施及效果,构建以跳站停车和多车站客流控制为手段的双层线性规划模型。上层模型以列车总延误最小为目标,以列车载客能力为约束;下层模型以上车客流量最大为目标,以列车载客能力和控流率均衡为约束。采用灵敏度分析算法求解模型,并以北京地铁亦庄线故障延误事件为例,验证模型和算法的有效性。结果表明:采用跳站停车与进站客流协同控制可使延误列车行程时间缩短5.2%,使各车站进站率方差降低97.8%,在保障乘客公平性的条件下提高列车运行和乘客集散效率。  相似文献   

20.
列车停站时间是控制地铁系统通过能力的一个关键控制性因素.列车停车站时间主要由上下车客流量决定.天府广场站是1号线中客流量最大的车站之一,为了使车站客流有序流动,保证运营安全,作者结合车站站台型式,提出了客流组织原则,研究了列车开关门运营管理模式.本文创造性地将列车停站时间用图示的方法表示出来,并通过不同的方案研究,得出...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号