首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
针对受全球气候转暖影响青藏铁路沿线年平均气温逐年上升的环境变化,基于青藏铁路沿线不同区域内多年来的气象及地温监测资料,进行青藏铁路工程走廊气候要素演化及多年冻土对全球气候变化响应的研究。结果表明:青藏铁路工程走廊内气温基本以年均0.03℃的速度升高;年降水量大部分在250~450mm之间,且呈波动增大变化趋势;冻结指数和融化指数逐年增大,暖冬现象明显;地面温度升温速率达0.06℃·年-1,是气温升温速率的1.34倍;沿线多年冻土区2007年至2013年间天然上限抬升的仅占9%,而天然上限下降的占91%;地基多年冻土不同深度处地温均在升高,距离上限较近的地温升温速率普遍最大,多年冻土退化主要为自上而下;唐古拉山以北多年冻土退化较唐古拉山以南明显。  相似文献   

2.
通过对青藏铁路多年冻土区长期监测系统多年来的大量实测数据进行分析,研究了青藏铁路路基下多年冻土演化特征及规律。研究结果表明:青藏铁路沿线气温逐年升高,降水量、冻结指数和融化指数逐年增大,暖冬现象明显,地表温度年升高率达到0.06℃/年;沿线多年冻土区2007—2013年间冻土天然上限下移的达91%,不同深度处的地温整体处于升温状态;青藏铁路路基下多年冻土也发生了升温退化,在2007年冻土人工上限相对原天然上限均抬升的占81%,路基下多年冻土退化明显滞后于天然场地;片石路基、热棒路基等主动降温措施效果明显,保证了青藏铁路多年冻土路基工程的稳定。  相似文献   

3.
青藏铁路安多段抛片石路基温度与变形规律分析   总被引:1,自引:0,他引:1  
介绍青藏铁路安多段冻土路基稳定性监测工程的监测方案、技术关键,通过对2个冻融周期内冻土融化深度、地温变化规律、冻土多年上限、冻胀板变形的分析,发现多年冻土上限上移,地温波动滞后于气温波动,上限附近地温基本不变且呈负温,有利于多年冻土的保护,说明抛片石路基起到了积极作用,为评价高原、高寒、冻土地区路基稳定性提供可靠依据;对青藏铁路的运营、维护具有重要的现实意义。  相似文献   

4.
根据青藏铁路北麓河试验段路堤、路堑过渡带近5年来的地温和变形监测资料,分析挖方段、零填段及填方段的冻土上限变化和路基变形特性。研究结果表明:挖方段,2002和2004年的多年冻土人为上限均为1.6 m,相对原天然上限下降量为0.5 m,但在2005年冻土上限有所回升,其变形主要表现为路基换填土层的固结变形;零填段,冻土上限上升量较大,2005年上升量达2.5 m,其变形主要来自活动层的压密变形;填方段,冻土上限有所上升,2005年上升量为0.7 m,其变形主要为天然上限以下冻土层的压缩及蠕变变形;到2005年12月,此过渡带路基均没有发生融沉变形,路基热稳定性好;从总沉降变形量来看,路堤断面变形量最大,零填断面变形量次之,路堑断面变形量最小,2004年11月后,总变形已基本趋于稳定。路基纵向变形比率最大为1.3∶1 000,小于线路设计坡度的3∶1 000,路基纵向沉降变形比较均匀,路面平顺性较好,能满足列车安全行驶的要求。  相似文献   

5.
为明确路堤高度对青藏铁路多年冻土区稳定性的影响,通过对沿线多年冻土区中融区路堤冻结深度和冻土区路堤监测断面实测地温监测数据的分析,研究青藏铁路多年冻土区路堤的地温特征和变化规律。结果表明:青藏铁路多年冻土区沿线路堤的临界高度是不一致的,在多年冻土区腹地的越岭地段,其年平均气温和地温均较低,冻土环境相似,路堤的上临界高度为7 m左右,在地势相对较低、气温和地温相对较高的其他地貌单元中,路堤临界高度则相对较低;青藏铁路多年冻土区高于上临界高度的路堤主要分布在昆仑山、风火山、唐古拉山等山区地貌单元中。  相似文献   

6.
青藏铁路多年冻土区长期监测系统的研究与应用   总被引:2,自引:0,他引:2  
研究目的:青藏高原多年冻土区现存的地质地貌形态是经过漫长的地质历史时期形成的,部分多年冻土区的年平均气温相对较高,冻土厚度较薄,热稳定性较差,冻土的稳定性直接关系到上部工程结构的稳定性和耐久性。研究和掌握多年冻土环境变化对工程结构稳定性影响的途径和方法,可以了解青藏铁路沿线多年冻土区气候变化情况和气候影响下的冻土发展趋势,为青藏铁路制定工程防治措施提供依据。研究结论:(1)通过对近几年的监测数据分析来看,青藏铁路长期监测系统运行良好,监测数据真实可靠,能够作为青藏铁路冻土区工程稳定性评价的依据;(2)利用长期监测系统对多年冻土路基地段进行了多年连续监测,发现了出现较大沉降变形冻土路基的环境特征以及沉降机理、据此拟定出着眼维持路基状态、改善路基系统水热条件、缓解人为上限下降、减缓路基沉降速率的工程补强措施;(3)通过长期监测系统对桥梁、涵洞断面的监测和分析,认为多年冻土区桥涵基础目前整体上是稳定的。  相似文献   

7.
多年冻土区典型路堑边坡失稳病害的防治   总被引:2,自引:1,他引:1  
研究目的:随着西部大开发的推进,我国在青藏高原地区修建了青藏铁路等工程,青藏公路的改建工程最近也在展开,这两条线路穿越了550 km的多年冻土区.青藏铁路路基自2001-2002年修完以来已有五六年的时间,从2006年7月开始试运营到现在也有将近2年的时间了.笔者在2007年8月底和9月初对青藏铁路格拉段多年冻土区路基状况作了一个全面的调查,在调查中发现了不少问题,其中路堑的问题最为突出.研究结论:依据这次调查中病害严重断面,以K 1 115断面和K 1 128断面为重点分析断面,结合2008年3、4月份调查的钻孔的水文地质资料和多年冻土地区的特殊环境,判断人为上限形态,依据冻土强度室内试验和经验公式,对路堑边坡进行稳定性分析,指出路堑边坡病害的病因和提出防护措施.  相似文献   

8.
刘新福 《铁道建筑》2012,(5):123-125
本文分析了青藏铁路沿线高气温和高地温典型地段在三个阶段的地温和路基变形特征。第一阶段(工程热扰动阶段),热扰动影响显著且出现了较大的热融变形;第二阶段(热扰动弱化阶段),多年冻土经过1~2个冻融循环以后,路基结构的散热降温效果开始显现,多年冻土上限开始稳定上升;第三阶段(新的热力平衡形成阶段),多年冻土上限普遍抬升,冻土得到有效保护,浅层土体含水量和密实度成为主要影响因素。  相似文献   

9.
研究目的:分析青藏铁路施工区多年冻土上限的变化规律以及填筑铁路路基施工对下伏多年冻土赋存条 件的影响。 研究方法:系统分析埋设在青藏铁路清水河地区路基中2个断面内的共8个地温测试孔3年来采集的地温 观测资料,研究该地区铁路路基下伏高原多年冻土融化特征。 研究结论:由于受到填筑路基时赋存在路基填料内的热量的影响,铁路路基下伏多年冻土近地表的地温变 化特征与天然地面下的多年冻土的地温变化特征有明显的不同,且向阳面与被阴面差别较大。多年冻士的上限 在施工初期会有一个明显的下移沉降,随着时间的推移,虽然残存在路基中的热量逐渐消散,多年冻土上限下 降会逐渐稳定,但由于受到太阳辐射和路基边坡形状及融化夹层的影响,多年冻土上限会逐渐稳定,但不会在 短时期内上升到天然地面下多年冻土的上限水平。  相似文献   

10.
冻土铁路涵洞施工对地基土地温的影响   总被引:3,自引:0,他引:3  
通过对青藏铁路沱沱河试验段2座试验涵洞进行地温现场监测和观测数据的分析,研究适合青藏高原特殊施工环境的涵洞施工工艺、最佳施工季节、施工对多年冻土的影响以及沿涵洞轴向多年冻土上限的变化特征。研究表明:涵洞施工选择在寒季且选用预制基础,对冻土的热扰动较小;受涵洞施工热扰动、路基填土储热以及涵洞过水等的影响,建涵初期涵洞下多年冻土地温升高,且有部分融化现象;由于涵洞的通风与遮阳作用,涵洞下多年冻土近地表地温的变化特征与天然地面下有明显的不同,涵内浅层地温对气温的响应比天然地面相应深度迟缓,浅层地温年波动幅度逐渐减小,尤其在夏季正温波动幅度明显减小,同时沿涵洞轴向不同部位地温变化特征也有所不同,涵身地基地温正温波动幅度小于进出口,而负温波动幅度大于进出口,与此相应,涵身冻土的人为上限一般也高于洞口,说明路基和涵洞具有保温隔热的作用。  相似文献   

11.
研究目的:为了及时掌握热棒路基的工程特性,把握热棒的降温效果,以便评价青藏铁路多年冻土区热棒路基的工程稳定性,本文选择青藏铁路一处热棒路基为研究对象,对该断面天然孔及左、右路肩孔2006~2009年的地温进行分析,研究热棒路基的降温效果.研究结论:通过分析得出0~1.5m深度范围内地温受气温影响变化较大,路肩孔1.5 ~10.0 m之间由于热棒的主动降温作用,地温呈逐年下降的趋势,并且在青藏铁路运营后的前2~3年内地温下降明显,表明热棒能快速降低地温,保护多年冻土.  相似文献   

12.
收集了青藏高原多年冻土腹部地区风火山冻土定位观测站观测的1976—2014年的年平均气温、年平均地表温度、年降水量及天然冻土测温孔地温资料,对比分析了年平均气温、年平均地表温度、年降水量及多年冻土地温的变化规律及其之间的相互影响关系。结果表明:(1)对于青藏高原风火山地区,寒季降水对多年冻土的保温作用相对较弱,而暖季降水对多年冻土的降温作用相对较强,总体上降水对多年冻土起到了保护作用。(2)在气温和地表温度总体处于升高状态的影响下,青藏高原风火山地区多年冻土地温也在升高,处于退化状态,但降水量的增大降低地表温度,使得传入下部多年冻土的热量减小,从而降低多年冻土地温的升温速率,起到了减缓多年冻土退化的效果。  相似文献   

13.
青藏铁路多年冻土区站场路基温度场试验研究   总被引:2,自引:0,他引:2  
站场路基的宽度为单线普通路基宽度的两倍 ,结合青藏铁路试验工程观测的数据 ,分析了冻土区站场路基地温场以及多年冻土人为上限的特征 ,探讨了路基的冻结和融化过程的规律 ,阐述了多年冻土区路基的稳定性问题。  相似文献   

14.
青藏铁路多年冻土区普通路基地温监测及其预测分析   总被引:1,自引:0,他引:1  
青藏铁路多年冻土区局部地段以普通路基形式通过,其稳定性与铁路的正常运营密切相关。2002~2003年在北麓河布置了普通路基试验段,用于监测路基的温度状态。基于监测资料,分析路基边坡温度变化过程、路基及下部土体温度场分布以及进入多年冻土的热流量。结果表明,阳坡面年平均温度比阴坡面高2.9℃,阴坡面温度年较差比阳坡面大2.2℃。受地表温度边界条件控制,路基阳坡下土体融化深度明显大于阴坡,且路基下部土体处于升温状态。路基下部土体不同部位主要表现为吸热强度逐年略有减小的吸热状态。模拟计算50年气温升高1℃条件下路基温度场,结果表明50年后路基冻土上限下降明显,并且冻土温度主要介于0~-0.5℃之间。  相似文献   

15.
青藏铁路多年冻土区涵洞病害机理分析   总被引:1,自引:1,他引:0  
为了防治青藏铁路多年冻土区涵洞病害,通过对4座涵洞的现场变形以及温度场监测,利用现场调查与监测数据分析,查明涵洞病害形成的7种不同原因。结果表明:青藏铁路的施工以及水热侵蚀引起地基多年冻土升温融化下沉以及冻土蠕变下沉是造成青藏铁路多年冻土区涵洞病害的主要原因。可通过减少和杜绝涵洞地基周围的水热侵蚀以及采取埋设热棒等工程措施进而达到防治涵洞病害的目的。  相似文献   

16.
青藏铁路高填方路基对下伏多年冻土热状况的影响   总被引:11,自引:0,他引:11  
基于青藏铁路北麓河试验段两个监测断面的地温监测资料 ,分析了修筑高路基后下伏土层的热状况变化特征。结果表明 ,修筑高路基后 ,多年冻土上限有所抬升 ,而下伏土层地温明显升高。多年冻土上限的抬升主要是由于高路基的热阻效应导致上限附近土层温度变幅急剧减小而形成的。高路基的修筑会引起路基阴阳面热交换状态的明显差异 ,路基阳面边坡是最强烈的吸热面 ,而路基阴面边坡表现为放热效应 ,由此会形成下伏多年冻土融化状态的不同  相似文献   

17.
青藏铁路冻土路基沉降变形预测   总被引:8,自引:1,他引:7  
青藏铁路试验工程北麓河试验段冻土路基沉降变形现场试验研究表明:即使路基下冻土人为上限有所上升,冻土路基仍会产生较大的沉降变形。这种变形主要来自原天然上限以下高温—高含冰量冻土升温引起的压缩变形。路基下多年冻土的升温幅度、高含冰量冻土层厚度和路堤高度越大,路基的沉降变形量就越大。数值计算结果表明:在路堤填土满足临界高度,且考虑青藏高原年平均气温逐年上升的条件下,青藏铁路北麓河试验段冻土路基在未来50年内的总沉降量可能达到30 cm。因此,要控制冻土路基的沉降变形,必须采取主动降低多年冻土温度的工程措施,单纯靠增加路堤高度的传统方法不能解决问题,甚至适得其反。  相似文献   

18.
通过对青藏铁路清水河地区拼装式涵洞地基温度和沉降的观测,研究多年冻土区拼装式涵洞现浇混凝土基础对冻土的热扰动影响、地基的回冻规律和冻土人为上限的变化特征,分析涵洞结构随地基冻胀、融沉产生的变形。经过2个冻融周期的现场测试和研究表明:青藏高原清水河细颗粒高温多年冻土区涵洞基础施工的时间若选在10月下旬,明挖基坑及现浇基础混凝土对基底以下多年冻土的影响深度为1.1~1.3m,施工扰动、融化后的冻土地基回冻时间为45~50d,涵洞基础施工2年后多年冻土地基人为上限上升了1.0m左右,冻土上限沿涵洞中轴线在其中部上升大,两端上升较小,这说明涵洞路基和涵洞具有保温隔热的作用;涵洞建成1年后地基沉降大部分已发生,且2年中涵洞地基的不均匀沉降基本稳定。  相似文献   

19.
青藏铁路多年冻土地区热管路基三维数值分析   总被引:6,自引:4,他引:2  
考虑多年冻土中水的相变,采用有限元进行热管保护多年冻土路基效果的三维数值分析。分析结果表明,热管能大幅度降低路基土体的温度,提升路基冻土上限,增大路基抵抗外界温度变化的能力,保证路基的长期稳定。考虑路基工程所在冻土区段气候和冻土条件,研究热管的有效影响范围,得出结论:热管的有效冷却半径为1 7m左右;在年平均气温为-5 2℃,冻土年平均地温为-1 0℃以上的高温冻土区,热管埋设间距宜取2 8~3 3m,可抬升路基冻土上限0 6~0 8m;在年平均气温为-6 3℃,冻土年平均地温低于-2 0℃的低温冻土区,热管埋设间距可加大到3 3~3 8m,路基冻土上限可抬升0 8~1 2m。  相似文献   

20.
热管-保温板复合路基是青藏铁路应用广泛的一种新型路基结构形式。通过数学模型分析,推导出用于青藏铁路冻土路基热管的热流表达式,并用热焓法考虑冻土相变问题对该路基结构形式及无保温板情况施工后20年的路基温度场进行数值模拟。通过数值模拟可知:保温板能够有效地阻止热量由路基面向下传入地基中,使0℃等温线始终在保温板底层;复合路基多年冻土上限的位置要比无保温板时的高;该结构形式对路基中心、路肩和坡脚下的多年冻土上限抬升的综合效果更好;考虑施工条件后,复合路基在保温板铺设距离天然地面之上0.3~0.6 m对于路基稳定性最为有利;该路基结构形式为青藏铁路多年冻土区路基的理想结构形式,有利于克服全球变暖的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号