首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
在青藏高原风火山多年冻土试验场,对太阳能制冷装置与热管制冷装置用于维护多年冻土地基热稳定的效果进行现场对比试验。结果表明:在同等试验条件下,太阳能制冷装置显现出了较强的工作性能和制冷效果;太阳能制冷装置能够以多年冻土区丰富的太阳光照为热源动力,使制冷装置不分季节全时段工作,特别是在暖季,能够有效阻止环境温度对多年冻土地基的热侵蚀;太阳能制冷装置的年均地温降低幅度比热管制冷装置的大0.57~0.96℃,制冷影响半径比热管制冷装置的大0.13~0.87m,实际制冷量为热管制冷装置制冷量的1.97倍。  相似文献   

2.
为揭示岛状多年冻土区高速铁路路基热状态,提出合理有效的制冷结构,在新建哈尔滨至伊春高速铁路某车站试验段开展现场监测,获得岛状多年冻土的地温数据;基于实测地温数据,采用冻土水热耦合理论,对将在试验段实施的两侧双排普通热棒路基、两侧双排+中心单排全季热棒路基、两侧单排+基底横向通铺全季热棒路基3种制冷路基结构进行数值模拟,对比了3种制冷路基结构的地温分布特征及对下伏岛状多年冻土的降温效果。研究结果表明:铁力地区年均气温和降水呈增大趋势,天然场地岛状多年冻土地温在-0.3℃左右,属于高温极不稳定多年冻土。3种制冷路基结构中,两侧单排+基底横向通铺全季热棒对岛状多年冻土保护及降温效果最优,两侧双排普通热棒最差。普通热棒路基的多年冻土上限呈“两侧凸,中间凹”形态,抬升不明显;全季热棒路基的多年冻土上限呈“上凸缓斜平顶”形态,抬升显著。研究成果可对多年冻土区高速铁路路基建设和结构优化提供技术支撑。  相似文献   

3.
青藏铁路多年冻土地区热管路基三维数值分析   总被引:6,自引:4,他引:2  
考虑多年冻土中水的相变,采用有限元进行热管保护多年冻土路基效果的三维数值分析。分析结果表明,热管能大幅度降低路基土体的温度,提升路基冻土上限,增大路基抵抗外界温度变化的能力,保证路基的长期稳定。考虑路基工程所在冻土区段气候和冻土条件,研究热管的有效影响范围,得出结论:热管的有效冷却半径为1 7m左右;在年平均气温为-5 2℃,冻土年平均地温为-1 0℃以上的高温冻土区,热管埋设间距宜取2 8~3 3m,可抬升路基冻土上限0 6~0 8m;在年平均气温为-6 3℃,冻土年平均地温低于-2 0℃的低温冻土区,热管埋设间距可加大到3 3~3 8m,路基冻土上限可抬升0 8~1 2m。  相似文献   

4.
针对多年冻土区普通热棒在暖季难以维护路基热稳定性的技术缺陷,首次将半导体制冷技术应用于维护多年冻土地基热稳定性。在风火山多年冻土区试验场地开展了半导体与普通热棒制冷技术制冷效果的对比试验,分析2016年12月和2017年4—9月间天然地温、热棒、半导体制冷装置在0~6.0 m深度内的温度变化情况。研究结果表明:半导体制冷装置侧壁温度较天然地温在寒季低2.21~5.48℃,在暖季低0.81~3.80℃;半导体制冷装置较热棒在寒季低0.13~0.92℃,在暖季低1.16~2.06℃。半导体制冷装置比普通热棒能更有效地降低地层温度,减小冻融层厚度,增加地基冷储量,有效维护地基热稳定性。  相似文献   

5.
冻土铁路涵洞施工对地基土地温的影响   总被引:3,自引:0,他引:3  
通过对青藏铁路沱沱河试验段2座试验涵洞进行地温现场监测和观测数据的分析,研究适合青藏高原特殊施工环境的涵洞施工工艺、最佳施工季节、施工对多年冻土的影响以及沿涵洞轴向多年冻土上限的变化特征。研究表明:涵洞施工选择在寒季且选用预制基础,对冻土的热扰动较小;受涵洞施工热扰动、路基填土储热以及涵洞过水等的影响,建涵初期涵洞下多年冻土地温升高,且有部分融化现象;由于涵洞的通风与遮阳作用,涵洞下多年冻土近地表地温的变化特征与天然地面下有明显的不同,涵内浅层地温对气温的响应比天然地面相应深度迟缓,浅层地温年波动幅度逐渐减小,尤其在夏季正温波动幅度明显减小,同时沿涵洞轴向不同部位地温变化特征也有所不同,涵身地基地温正温波动幅度小于进出口,而负温波动幅度大于进出口,与此相应,涵身冻土的人为上限一般也高于洞口,说明路基和涵洞具有保温隔热的作用。  相似文献   

6.
根据青藏铁路长期监测系统地温观测资料,选取2个典型路堑监测断面,研究路堑地段多年冻土不同深度处地温、多年冻土人为上限变化特征和地温演化规律。结果表明:青藏铁路路堑地段天然状态下多年冻土处于升温退化状态,地表以下2. 5 m处升温速率约为10. 0 m处的2. 5~3. 0倍,多年冻土自上而下的退化趋势明显;在全球气候变暖影响下,青藏铁路路堑地段地基多年冻土人为上限埋深均加深,多年冻土发生退化,且路堑堑底人为上限变化与天然孔基本一致; 2个断面左右侧堑底较天然场地地基多年冻土升温速度快,退化更严重,且左右侧差异极为明显。  相似文献   

7.
多年冻土区路基防护技术是冻土科研人员长期研究的重点。基于多年冻土区现场试验,对研发的新型机械式制冷热管与普通热管的制冷效果进行对比分析。结果表明:(1)机械式制冷热管可以弥补普通热管在暖季不能工作的缺陷,能在暖季和寒季同时带走活动层中的热量,增加冷储量,有效保护多年冻土;(2)分别在寒季和暖季,机械式制冷热管比普通热管的侧壁温度在活动层中低2. 77~0. 39℃、1. 22~0. 13℃,在多年冻土层2. 0~6. 0 m深度范围中低3. 24~0. 52℃、0. 55~0. 12℃,机械式制冷热管年均温度比普通热管年均温度在活动层和多年冻土层中均低0. 74℃;(3)分别在暖季和寒季,机械式制冷热管的积温是普通热管积温的1. 4倍~2. 1倍、1. 4倍~1. 8倍,机械式制冷热管的年积温是普通热管年积温的1. 9倍。研究成果可为新型机械式制冷热管技术在多年冻土热稳定维护中的应用提供理论依据。  相似文献   

8.
通过对青藏铁路多年冻土区长期监测系统多年来的大量实测数据进行分析,研究了青藏铁路路基下多年冻土演化特征及规律。研究结果表明:青藏铁路沿线气温逐年升高,降水量、冻结指数和融化指数逐年增大,暖冬现象明显,地表温度年升高率达到0.06℃/年;沿线多年冻土区2007—2013年间冻土天然上限下移的达91%,不同深度处的地温整体处于升温状态;青藏铁路路基下多年冻土也发生了升温退化,在2007年冻土人工上限相对原天然上限均抬升的占81%,路基下多年冻土退化明显滞后于天然场地;片石路基、热棒路基等主动降温措施效果明显,保证了青藏铁路多年冻土路基工程的稳定。  相似文献   

9.
采用碎石护坡路基是多年冻土地区主要的工程处理措施。本文依据2003—2011年青藏铁路楚玛尔河地区碎石护坡路基的地温及沉降数据,对其长期效果进行分析。结果表明:采用碎石护坡路基能有效冷却地基和保护多年冻土,路基下地温总体上呈现降低趋势,竣工后2年内冻土人为上限有明显抬升,2005年以后上限基本稳定,冻土路基逐渐呈现出热稳定状态;碎石护坡对于减少路基阴阳坡的地温差异有显著作用;碎石护坡路基填筑完成后,其前期沉降较大,后期逐渐减小,2007年以后每年的沉降量均在10 mm以内,路基呈现出长期稳定状态;碎石护坡施工对铁路运行影响小,故对于冻土铁路可采用碎石护坡措施进行路基补强。  相似文献   

10.
青藏铁路冻土路基热棒应用效果试验研究   总被引:4,自引:0,他引:4  
通过青藏铁路沿线典型冻土路段热棒试验路基和对比路基的地温及变形现场监测,研究热棒对多年冻土路基的保护效果。通过对埋置在正线试验路基左侧不同规格热棒周围地温的监测,研究热棒构造对路基降温效果的影响。试验结果表明,热棒显著抬升路基下部多年冻土的天然上限,其最大平均抬升值达1.66 m;斜插方式埋置热棒能使最大融化深度曲线更快地趋于平缓,达到对路基下部多年冻土的整体保护;热棒路基的累计变形远小于未设置热棒的对比路基;热棒的产冷功率越大,其降温效果越好,降温范围也越大。  相似文献   

11.
青藏铁路安多段抛片石路基温度与变形规律分析   总被引:1,自引:0,他引:1  
介绍青藏铁路安多段冻土路基稳定性监测工程的监测方案、技术关键,通过对2个冻融周期内冻土融化深度、地温变化规律、冻土多年上限、冻胀板变形的分析,发现多年冻土上限上移,地温波动滞后于气温波动,上限附近地温基本不变且呈负温,有利于多年冻土的保护,说明抛片石路基起到了积极作用,为评价高原、高寒、冻土地区路基稳定性提供可靠依据;对青藏铁路的运营、维护具有重要的现实意义。  相似文献   

12.
高原融区和多年冻土过渡路段涵洞地基试验研究   总被引:4,自引:2,他引:2  
运用现场测试方法,对青藏铁路两座拼装式涵洞的基础变形、地基土地温及洞口气温的测试结果进行分析,研究多年冻土区涵洞工程对冻土地温状况、冻融过程、冻土上限变化的影响以及涵洞基础的冻融变形特征。结果表明:多年冻土地区修建涵洞工程后,气温对地温的影响增大,致使涵洞下原多年冻土上限附近地温波动明显,地温年变化深度增大;由于场地冻土条件及地温场沿涵身的变化,涵洞基础变形沿涵身表现出明显的不均匀性。  相似文献   

13.
刘新福 《铁道建筑》2012,(5):123-125
本文分析了青藏铁路沿线高气温和高地温典型地段在三个阶段的地温和路基变形特征。第一阶段(工程热扰动阶段),热扰动影响显著且出现了较大的热融变形;第二阶段(热扰动弱化阶段),多年冻土经过1~2个冻融循环以后,路基结构的散热降温效果开始显现,多年冻土上限开始稳定上升;第三阶段(新的热力平衡形成阶段),多年冻土上限普遍抬升,冻土得到有效保护,浅层土体含水量和密实度成为主要影响因素。  相似文献   

14.
针对受全球气候转暖影响青藏铁路沿线年平均气温逐年上升的环境变化,基于青藏铁路沿线不同区域内多年来的气象及地温监测资料,进行青藏铁路工程走廊气候要素演化及多年冻土对全球气候变化响应的研究。结果表明:青藏铁路工程走廊内气温基本以年均0.03℃的速度升高;年降水量大部分在250~450mm之间,且呈波动增大变化趋势;冻结指数和融化指数逐年增大,暖冬现象明显;地面温度升温速率达0.06℃·年-1,是气温升温速率的1.34倍;沿线多年冻土区2007年至2013年间天然上限抬升的仅占9%,而天然上限下降的占91%;地基多年冻土不同深度处地温均在升高,距离上限较近的地温升温速率普遍最大,多年冻土退化主要为自上而下;唐古拉山以北多年冻土退化较唐古拉山以南明显。  相似文献   

15.
通过对青藏铁路清水河地区拼装式涵洞地基温度和沉降的观测,研究多年冻土区拼装式涵洞现浇混凝土基础对冻土的热扰动影响、地基的回冻规律和冻土人为上限的变化特征,分析涵洞结构随地基冻胀、融沉产生的变形。经过2个冻融周期的现场测试和研究表明:青藏高原清水河细颗粒高温多年冻土区涵洞基础施工的时间若选在10月下旬,明挖基坑及现浇基础混凝土对基底以下多年冻土的影响深度为1.1~1.3m,施工扰动、融化后的冻土地基回冻时间为45~50d,涵洞基础施工2年后多年冻土地基人为上限上升了1.0m左右,冻土上限沿涵洞中轴线在其中部上升大,两端上升较小,这说明涵洞路基和涵洞具有保温隔热的作用;涵洞建成1年后地基沉降大部分已发生,且2年中涵洞地基的不均匀沉降基本稳定。  相似文献   

16.
为解决青藏铁路建设过程中不同多年冻土区大直径钻孔灌注桩桩土体系的回冻问题,认识钻孔桩成桩后对桩周多年冻土层地温的影响,本文从不同多年冻土区钻孔桩地温实测资料出发,通过对青藏高原多年冻土区与融区过渡带(高温极不稳定区DK1229 540)、高温不稳定多年冻土区(DK1047 000)及低温多年冻土区(DK984 096)3个试验场地实测地温资料的对比分析,得出青藏高原不同多年冻土区大直径钻孔灌注桩回冻过程的差异,从而可以为不同冻土区钻孔桩的后续施工提供技术支持。  相似文献   

17.
青藏铁路高填方路基对下伏多年冻土热状况的影响   总被引:11,自引:0,他引:11  
基于青藏铁路北麓河试验段两个监测断面的地温监测资料 ,分析了修筑高路基后下伏土层的热状况变化特征。结果表明 ,修筑高路基后 ,多年冻土上限有所抬升 ,而下伏土层地温明显升高。多年冻土上限的抬升主要是由于高路基的热阻效应导致上限附近土层温度变幅急剧减小而形成的。高路基的修筑会引起路基阴阳面热交换状态的明显差异 ,路基阳面边坡是最强烈的吸热面 ,而路基阴面边坡表现为放热效应 ,由此会形成下伏多年冻土融化状态的不同  相似文献   

18.
为解决多年冻土区冻融循环及全球气温升高引起的边坡失稳问题,基于"主动冷却"保护冻土的理念,结合框架锚杆和热棒制冷技术,提出一种既可主动降温、又能锚固支挡、还能减轻冻胀破坏,且适用于多年冻土边坡的新型支护结构,并阐述其技术原理;提出极限承载力和热量平衡两个设计控制指标,给出热-力共同控制的设计计算方法。将该结构和相应的计算方法应用于工程实例,计算结果表明:所提出结构不仅能防止多年冻土边坡上限退化,甚至能抬升上限,进而提高冻土边坡的稳定性;给出的计算方法能够较为准确描述结构的工作机理,为该结构的设计提供理论依据和参考。  相似文献   

19.
青藏铁路冻土路基沉降变形预测   总被引:8,自引:1,他引:7  
青藏铁路试验工程北麓河试验段冻土路基沉降变形现场试验研究表明:即使路基下冻土人为上限有所上升,冻土路基仍会产生较大的沉降变形。这种变形主要来自原天然上限以下高温—高含冰量冻土升温引起的压缩变形。路基下多年冻土的升温幅度、高含冰量冻土层厚度和路堤高度越大,路基的沉降变形量就越大。数值计算结果表明:在路堤填土满足临界高度,且考虑青藏高原年平均气温逐年上升的条件下,青藏铁路北麓河试验段冻土路基在未来50年内的总沉降量可能达到30 cm。因此,要控制冻土路基的沉降变形,必须采取主动降低多年冻土温度的工程措施,单纯靠增加路堤高度的传统方法不能解决问题,甚至适得其反。  相似文献   

20.
青藏铁路冻土工程有关问题的探讨   总被引:4,自引:0,他引:4  
李成 《铁道勘察》2007,33(3):84-87
冻土是一种特殊的土体,有着不同于普通土的许多特点。多年冻土的季节融化层每年都要发生季节性的冻融过程,并伴随着发生各种不良冻土地质现象,产生一系列的工程问题。融沉、冻胀和不良冻土地质是多年冻土区筑路工程最主要的问题。对青藏线多年冻土区各类路基工程措施进行了讨论和介绍,并强调全球范围内气温升高将改变青藏高原多年冻土的环境。为了应对高温冻土和全球变暖的严峻挑战,必须改变以往沿用的消极被动保护冻土的方法,而采用积极主动保护冻土的工程措施,即冷却地基的方法,应研究开发新的地温调控原理和技术,采用新的路基结构形式,以确保路基工程的长期稳定。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号