首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
激光雷达是智能网联汽车环境感知的重要传感器,多坐标系空间标定是激光雷达精准环境感知的前提条件。针对激光雷达与车体坐标系空间同步面临传感器观测单一的问题,提出基于激光雷达与车辆的平面运动和直线运动约束2步标定方法。为构建运动约束,基于激光里程计获取激光雷达运动位姿信息,通过激光雷达运动轨迹信息和时域上多帧地面平面拟合信息进行平面行驶识别,在满足平面路况下构建平面运动约束标定,进而标定横滚角与俯仰角;基于俯仰角和横滚角对车辆轨迹进行修正,通过激光运动轨迹建立直线行驶判别模型判别车辆运动状态,在满足车辆直线行驶路况下构建直线运动约束,从而标定偏航角。最后,在智能驾驶试验车上开展了激光雷达与车辆坐标系标定的实车试验,通过实车采集的数据验证了提出的空间同步方法的可行性。试验结果表明:提出的激光雷达与车体坐标系标定方法优于基于标定物的方法,在原始数据上可以保证标定后的旋转误差降低至0.61,误差率降低约47.4%。在手动调整的扩充数据上标定后的旋转误差降至1.64,误差率降低约40.6%。相对于基于标定物的方法,其旋转误差均有降低且不需要借助特定的标定物与标定场,降低了对环境的依赖程度。同时通过消...  相似文献   

2.
为明确高速公路行驶环境下车辆在车道保持阶段的行驶轨迹特征,给车道宽度值确定提供参考,在重庆市主城区2段高速公路上开展了38名驾驶人的实车驾驶试验。使用车载设备采集自然驾驶状态下的车辆行驶速度、行驶轨迹和“车辆中心点-车道线”横向距离。基于以上数据,计算轨迹横向偏移值和“车身轮廓-车道线”侧向余宽等参数,分析高速公路直线/曲线路段的车辆轨迹横向偏移和侧向余宽变化特征及其影响因素。结果表明:曲线路段和直线路段的期望轨迹横向偏移存在差异,曲线路段行驶轨迹的本质特征是轨迹往曲线内侧偏移,而直线路段的车辆轨迹是倾向于往车道左侧偏移,但曲线路段紧贴车道线行驶的车辆占比要低于直线路段。直线路段车道左侧余宽最小值、期望值分别集中于[0.2 m, 0.6 m]和[0.3 m, 0.9 m],曲线路段车道左侧余宽的最小值和期望值主要分布在[0.2 m, 0.7 m]和[0.5 m, 0.9 m]范围内;车道位置对期望轨迹横向偏移和车道侧向余宽均有影响,左转弯路段的左侧余宽要低于直线路段和右转弯路段;在左转弯路段内侧车道行驶时车辆与中分带的距离更近,因此左转弯的事故风险更高;行驶速度增加时,内侧车道的车辆有...  相似文献   

3.
针对智能车辆安全辅助驾驶系统中利用单目视觉进行车道识别的问题,提出了1种基于平行直线对模型的车道检测方法。该方法根据高速公路图像特征构建平行直线对模型,在此基础上先利用 Hough变换提取直线,再由改进的级联 Hough变换检测出平行直线对的消失点,最后通过消失点和先验信息来提取当前车道线。使用M atlab对高速公路上不同路段、不同光照情况、不同车辆干扰下共150幅道路图像进行实验,检测精度达88.6%,平均检测时间为0.24 s。实验结果表明,这一方法在高速公路行驶环境下能较准确地检测出当前车道线,具有很好的光照适应性、抗车辆干扰性和一定的实时性。   相似文献   

4.
一种视频交通流检测场景中的自适应道路结构提取算法   总被引:1,自引:0,他引:1  
为了保证视频交通流检测系统在检测场景变动时检测结果的正确性和有效性,文章提出了一种视频交通流检测场景中的自适应道路结构提取算法,以便适时调整检测区域的位置和大小。算法选用直线拟合车道线,并以车道线组合构造道路结构模型。在场景变化时,算法通过霍夫变换检测变化后的车道线,然后利用匹配误差和消失点约束对检测结果进行校验和修正,最终提取出正确的道路结构信息。实验结果表明,该算法在白天正常天气下提取正确率达99.1%,是一种有效可行的道路结构提取算法。  相似文献   

5.
为在道路设计阶段确定平纵组合与相邻路段线形对车道偏离的影响,并为减少因道路线形因素引发的侧碰、追尾甚至车辆驶出路外事故提供改善依据,基于真实的山区高速公路道路设计参数及周边地形,搭建驾驶模拟场景,利用驾驶模拟试验获取小客车车道偏离数据,并对应获取车辆当前所在路段及上、下游路段的线形参数。以车辆车道内行驶为参照,沿道路行进方向,将车道偏离行为分为左偏驶离车道与右偏驶离车道。因车道偏离受驾驶人影响,采用双层Logit模型,分别判定道路线形及驾驶人层的影响。研究结果表明:相比直线路段,曲线更易引发车道偏离行为,驾驶人易偏向于曲线内侧行驶;上游300 m路段曲率差越大、平均车速越大,则车道偏离的概率增大;相对于缓坡(-2%≤坡度S≤2%),行驶于上坡(S>2%)或下坡(S<2%)路段时,车辆车道偏离概率减小;车辆行驶于外侧车道的左偏驶离车道概率大于行驶于内侧车道;驾驶人因素对左偏驶离车道的影响比例为8.8%,对右偏驶离车道的影响比例为25.6%。研究结论可从组合线形角度帮助工程师设计更安全的山区高速公路。  相似文献   

6.
为了提高信号交叉口自动驾驶车辆左转运动规划的适应性、鲁棒性与类人化程度,提出一种考虑多目标需求的自动驾驶类人化全局运动规划方法。首先,基于西安市北大街信号交叉口规格构建结构化场景,结合车辆运动学模型与道路几何规格定义自动驾驶车辆规范化行驶安全域和车辆运动参数约束条件;其次,根据信号灯状态、道路限速与车辆性能约束制定上游阶段车辆不停车通行规则,以行驶安全、燃油消耗、通行效率与驾驶舒适度作为目标性能函数,构建类人化全局多目标优化模型,通过人类驾驶的车辆预转弯行为耦合上游阶段与转弯阶段;再次,针对非线性运动规划模型变量与约束规模化问题,采用粒子群算法与全联立正交配置有限元方法求解不同阶段车辆运动轨迹的最优解;最后,试验建立Prescan与MATLAB/Simulink联合仿真平台,从多目标性能、适应性以及合理性方面验证该模型的综合性能。结果表明:在以信号灯状态和车辆初速度为变量建立的12种工况下,该模型与人类驾驶车辆、混合运动规划模型相比,平均可分别节省燃油消耗63.7%和29.5%,平均通行延时分别降低3、0.9 s,且轨迹曲率更平缓,最大横向加速度与方向盘转角平方和的平均值最小,证明该模型的多目标性能更好;在以路缘石半径与车道数目为变量建立的7种交叉口规格工况下,所提出模型的车辆轨迹平滑,轨迹安全域边界距离始终大于1.4 m,曲率变化符合期望且峰值小于0.22 m-1,说明该模型具有较好的适应性;在自由/固定终端时刻条件下,该模型规划的车辆空间路径、速度、曲率及航向角的变化与目标权重变化保持一致,验证了模型的合理性。  相似文献   

7.
车道变换是一种复杂的刺激-反应行为,为了准确表示车辆变换车道的决策过程,克服现有模型的不足,重点考虑驾驶员特征和车辆类型对车道变换的影响,并将车道变换过程可划分为3个阶段,即车辆挟道意图的产生、换道可行性分析和换道的执行;引入随机效用理论描述换道需求的产生,建立了基于车道效用选择的自主性车道变换模型,利用视频处理软件获取大量车辆运行轨迹微观数据,采用极大似然估计法对构建的自主性车道变换模型进行了标定;最后,基于换道次数的仿真值与实测值,选取均方根偏差、均方根百分比偏差2个评价指标对车道变换模型的有效性进行了验证,误差指标小于10%,表明建立的自主性车道变换模型可以较好地描述车道变换复杂的运行行为.  相似文献   

8.
王俊骅  宋昊  景强  刘坤 《中国公路学报》2022,35(12):181-192
高精度车辆轨迹数据对于高速公路交通管理和智慧服务具有非常重要的研究及应用价值,然而现有的车辆轨迹感知技术难以获得全域全时车辆轨迹数据。为此,提出一种基于毫米波雷达的全域车辆轨迹跟踪技术方法,该方法包括:雷达原始数据获取及适配、轨迹数据清洗及降噪、道路线形感知及还原、车辆轨迹匹配及拼接。其中,雷达原始数据获取及适配通过构建雷达帧数据适配表将雷达数据格式标准化,并通过构建的轨迹可信度评价指标K,剔除镜像车辆轨迹数据,进而基于历史行车轨迹的统计学特征,采用聚类方法还原道路线形,最终通过雷达群组间车辆轨迹特征分析及匹配拼接,实现设备内部及跨设备对车辆轨迹的持续跟踪。利用载波相位差分技术(Real-time Kinematic, RTK)和基于无人机航拍视频定位技术分别对单车及多车轨迹跟踪精度进行检验。研究结果表明:在单目标跟踪状态下,系统的纬度偏差均值为-0.284 m,经度偏差均值为-0.352 m,纬度误差均值为0.712 m,经度误差均值为0.539 m;在多目标跟踪状态下,系统丢车率约为8%,轨迹定位与真实位置偏差均值为0.990 m,具备良好的轨迹跟踪精度。该方法为未来从更加宏观的范围内研究个体驾驶行为风险转移分析、微观水平的驾驶风险的时空演化提供了数据支撑。  相似文献   

9.
车道线等地面标志物的检测是自动驾驶车辆环境感知的重要内容,能够为车辆提供可行驶区域的信息。文章提出一种基于语义分割结果的车道线检测拟合方法。使用车载单目相机获取车辆行驶过程中采集的道路图像,送入卷积神经网络进行车道线语义分割。将分割得到的仅含车道线的二值图像进行透视变换得到鸟瞰图,筛选有效车道线像素点,对有效车道线点使用最小二乘法进行多项式拟合,输出左右车道线多项式拟合系数,能够有效解决传统车道线检测算法的环境适应性差,鲁棒性不强,对弯道车道线检测信息不够准确等问题。  相似文献   

10.
现有的无人机(UAV)交通状态感知方法,主要针对宏观交通状态参数的获取,同时尚未克服UAV自运动对交通参数检测精度的影响,难以满足智能交通系统对于高精度微观交通参数的应用需求。为此,提出一种基于地空信息融合的UAV交通状态感知方法,该方法包括:地空信息融合模型、道路关键点(IKP)检测及跟踪、车辆目标检测及追踪算法和交通状态参数提取及估计。其中,地空信息融合模型利用地基信息(IKP世界坐标)与空基信息(IKP像素坐标)进行最优化融合,并通过自适应IKP追踪算法与自适应UAV位置偏移判断算法实时更新模型参数,以此克服UAV自运动对车辆轨迹精度的影响,进而获取可靠的车辆级(瞬时速度、车头间距和车头时距)与车道级(车道动态密度、车道流量和空间平均车速)交通状态参数。利用提出的感知方法获取实地拍摄视频的车辆级交通参数并进行了分布检验,同时比较了基于不同交通流模型的车道级参数估算方法。结果表明:该方法在车辆检测的mAP@0.5指数超过90%,同时提取的车辆轨迹相对完整,获取的车辆级和车道级交通状态参数也符合实际交通流状况。最后,将该模型应用于实地道路的交通拥堵检测及交通事件检测,该研究结果为UAV在现代交通感知和管理中的应用提供了一种理论和技术参考。  相似文献   

11.
基于机器视觉的弯道图像能提供车辆行驶道路环境的丰富信息,从建立弯道模型、提取车道线像素点以及拟合车道模型等步骤分析了传统基于道路模型的弯道检测方法,针对传统方法很难适用于多种不同形状弯道的特点,提出一种基于特征点提取的弯道检测新方法;介绍了弯道检测在车道偏离预警、弯道限速以及弯道防碰撞预警等领域的应用情况;最后提出弯道检测应该建立三维车道线模型、注重发展多传感器融合技术,提高其适用性和鲁棒性.  相似文献   

12.
微观交通仿真模型的参数标定是保证仿真模型有效性的基础和前提。针对车辆在主路和辅路运行特征的差异,提出了1种针对主辅路的微观交通仿真模型参数标定方法。该方法以进口道的车均延误的偏差作为评价指标,以遗传算法作为求解工具,分别实现了微观交通仿真软件Vissim中主路和辅路驾驶行为参数的标定。同时,结合工程实例将该方法应用于北京市朝阳路与高碑店北路交叉口、南苑路与久敬庄路交叉口仿真模型的参数标定中。结果显示,采用该方法标定后的主路和辅路延误与实测延误的平均偏差分别为2.1s和2.5s ;采用主路和辅路统一标定的方法,主路和辅路延误与实测延误的平均偏差分别为7.1s和7.5s。结果表明,仿真模型参数能够有效地提高参数标定的仿真试验效率与仿真精度,验证了该方法将主路和辅路仿真模型参数分开标定的有效性。   相似文献   

13.
多车协同驾驶是智能车路系统领域的研究热点之一,可有效降低道路交通控制管理的复杂程度,减少环境污染的同时保障道路交通安全。基于多车协同驾驶控制结构,提出了一种无人驾驶车辆换道汇入的驾驶模型及策略,系统分析了多车协同运行状态的稳定条件。在综合分析无人驾驶车辆换道汇入的协作准则、安全性评估后,基于高阶多项式方法,结合车辆运行特性,通过引入乘坐舒适性的指标函数,设计得到无人驾驶车辆换道汇入的有效运动轨迹。通过研究汇入车辆与车队中汇入点前、后各车辆的运动关系,详细分析车辆发生碰撞的类型和影响因素,给出避免碰撞的条件准则,从而确保无人驾驶车辆汇入过程中多车行驶的安全性和稳定性。基于车辆运动学建立车辆位置误差模型,结合系统大范围渐进稳定的条件,选取线速度和角速度作为输入,应用李雅普诺夫稳定性理论和Backstepping非线性控制算法,设计了无人驾驶车辆换道汇入后的路径跟踪控制器。仿真试验和实车试验结果表明:所设计的换道汇入路径是可行、安全的,控制器具有良好的跟踪效果,纵向和横向的距离误差在15 cm以内,方向偏差的相对误差在10%以内。研究结果为智能车路系统中的多车状态变迁与协同驾驶研究提供了参考,可服务于未来道路交通安全设计和评价。  相似文献   

14.
基于GPS的公路视频影像信息系统   总被引:3,自引:0,他引:3  
为了提高公路路况管理及路产管理的效率,开发了基于全球定位系统(GPS)的公路视频影像信息系统.通过视频影像的实时采集压缩和GPS定位,系统可实现基于里程和道路设施的多种视频影像搜索和定位功能,同时可根据电子地图快速定位到相应的视频图像帧.在论述了系统的体系结构后,推导了利用GPS坐标推算里程的算法,该算法通过录入关键帧对应的里程,内插出每帧的里程数,并对其进行修正.实践证明:该算法可有效地控制图像帧的里程误差,该系统可有效用于公路路况管理和公路路产管理.  相似文献   

15.
韩皓  谢天 《中国公路学报》2020,33(6):106-118
针对交通状态复杂的高速公路交织区域,经验丰富的驾驶人能够通过正确地推断周围车辆的未来运动进行及时的车道变换,这对于实现安全高效的自动驾驶至关重要,然而目前的自动驾驶车辆往往缺乏这种预测能力。为此,基于深度学习理论,提出了一种结合注意力机制和编-解码器结构的交织区车辆强制性变道轨迹预测方法,利用Next Generation Simulation(NGSIM)数据集提取车辆变道过程中的关键特征,并引入碰撞时间(Time to Collision,TTC)和避免碰撞减速度(Deceleration Rate to Avoid a Crash,DRAC)2种风险指标,将变道车辆及其周围车辆视为一个整体状态单元,同时补全状态单元内部不同车辆在横向和纵向上的时空状态特征,从而更有效地刻画车辆间的动态交互行为;然后将不同观测车辆的连续窗口序列输入基于长短期记忆网络(Long Short-term Memory,LSTM)的编-解码器,预测交织区车辆变道的未来运动轨迹,通过添加软注意力模块,使模型能够集中聚焦于影响车辆在不同时刻下位置变化的关键信息,再现了真实交通场景下车辆的变道行为。试验验证表明:基于注意力机制的编-解码器模型与当前流行的卷积长短期记忆网络、极限梯度提升树等模型相比具有更高的轨迹预测精度,在长时域的变道轨迹拟合上有显著的优越性,为辅助和自动驾驶领域的发展提供了新思路。  相似文献   

16.
为了获得实时、准确的路面附着系数,进一步提高观测路面附着系数算法的精度和收敛速度,结合非线性车辆动力学模型和轮胎力修正模型,搭建分布式驱动电动汽车联合仿真平台,提出一种基于自适应衰减无迹卡尔曼滤波的路面附着系数观测算法。该算法设计与各轮对应的路面附着系数观测器,应用协方差匹配判据对观测器发散趋势进行判别,设计自适应加权系数修正预测协方差,以增强新近观测数据的利用率;同时采用次优Sage-Husa噪声估计器对未知的系统过程噪声进行估计,抑制观测器的记忆存储长度,调整过程噪声和测量噪声的均值与协方差,提高观测器的跟踪能力。利用分布式驱动电动汽车分别进行高、低附着路面和对开路面直线制动试验,并将自适应衰减无迹卡尔曼滤波路面附着系数观测器的观测结果与无迹卡尔曼滤波观测值、参考路面附着系数进行比较和分析。结果表明:高附着路面条件下,所设计的算法估计误差可控制在0.64%以内;低附着路面条件下,所设计的算法估计误差可控制在1.03%以内;对开路面条件下估计误差可控制在1.26%以内;自适应衰减无迹卡尔曼滤波算法相比无迹卡尔曼滤波算法响应速率更快,具有更高的估计精度和较强的自适应能力,估计结果整体上维持稳定,能够适应各种不同路面的估计。  相似文献   

17.
基于成像模型的车道线检测与跟踪方法   总被引:1,自引:0,他引:1  
针对结构化道路上存在非车道线标记干扰的情况,提出一种基于成像模型的线扫描车道线检测及跟踪方法。检测算法中首先对路面图像进行形态学高帽变换预处理,然后建立前方道路图像的成像模型,将图像坐标系中车道参数和世界坐标系中实际车道参数对应,对图像进行初扫描,利用边缘贡献函数及RANSAC算法选取最确定线后,以此线为标准进行二次扫描,得到边缘点后统计边缘贡献函数局部最大值并拟合成直线车道线。跟踪算法中运用Kalman滤波器预测车道线区域,并提取符合标准的控制点拟合成模型为B样条的车道线。试验结果表明:该方法能够快速准确地在复杂环境中提取多个车道线,尤其对存在非车道线道路标记干扰的情况有显著效果。  相似文献   

18.
提出了1种基于双视角学习原理的高速公路交通视频车辆事件鲁棒检测算法.针对道路交通结构化特点提出了分车道外极面图(Epipolar Plane Image,简称 EPI),以此反映交通断面车流整体特征.基于双视角学习原理,融合现有广泛应用的反映车辆独立行为的行驶轨迹特征,实现高速公路车辆事件鲁棒检测.针对多种典型车辆事件(包括交通拥堵,车辆逆行,车辆违规停车,交通事故等),本文算法总体检测率为94.09%,误检率为4.51%,漏检率为1.40%,其性能与传统单视角方法比较有较大的提高.   相似文献   

19.
动态路径规划是自动驾驶汽车避障控制的关键技术。针对自动驾驶汽车弯道超车工况,建立基于改进人工势场(Artificial Potential Field, APF)的动态路径规划方法。为使基于APF的动态路径规划方法能运用于包含弯曲道路的复杂交通环境,将已在直道环境验证过的道路APF函数通过极坐标系与笛卡尔坐标系的相互转换,建立考虑道路曲率的弯曲道路APF函数。针对根据车辆质心位置判断车辆碰撞风险方法存在的缺陷,提出考虑车辆体积的碰撞风险预判方法,建立综合考虑车辆位置、速度和体积的障碍车辆APF函数。基于弯曲道路APF和改进障碍车辆APF,建立道路环境综合APF,引导车辆实现弯道超车。为避免目标函数中子目标相互干涉,提高弯道超车安全性,提出根据本车与障碍车辆相对位置关系自适应调整权重矩阵的方法。基于Carsim/Simulink联合仿真平台,分别在静态障碍车辆和动态障碍车辆2种工况下,验证自动驾驶汽车弯道超车动态路径规划的有效性。研究结果表明:所建立的弯曲道路APF能引导车辆转弯行驶,避免冲出车道;目标函数权重自适应调整方法能根据超车过程动态调整子目标的权重,规划出符合道路交通安全法规的路径,避免车辆超车时提前折返原车道,提高了超车安全性;考虑车辆体积的障碍车辆APF提高了车辆碰撞风险的预判精度,有效避免碰撞事故发生。  相似文献   

20.
各种复杂环境下路面车道线的高效精确检测是自动驾驶领域中车道偏离预警系统的关键性技术之一。由于车辆实际运行环境的复杂性和路面车道线的多样性,现有方法在车道线检测的准确性和鲁棒性上仍需不断增强。提出一种面向多元场景结合GLNet的车道线检测算法。首先采用改进Gamma校正对待检测路面图像预处理,消减光照不均匀、夜晚等环境干扰,增强车道线纹理。然后为增强数据集的多样性,在LaneNet网络的基础上引入对抗生成网络DCGAN,构建GLNet网络模型。该模型采用编码-解码的网络结构提取车道线特征(车道蒙板和像素点),通过DBSCAN聚类算法将不同车道线划分为不同的实体,使用H-Net网络学习的视觉转换矩阵优化并拟合输出车道线。最后基于已训练好的GLNet权重模型对车道线进行精确提取,并在Tusimple数据集和自制数据集上测试验证。试验结果表明:该方法的检测准确率可达97.4%,相较于基于LaneNet网络的车道线检测算法明显提高;DCGAN网络的加入丰富了数据集类型,并提高了该模型的表征及分类能力;DBSCAN聚类算法的平均聚类时间约为0.016 s,相较于Meanshift算法运行效率更高。所提出的方法考虑了不规范、环境复杂等多种道路类型的车道线检测任务,提升了对复杂噪声与多元场景的处理能力,在车辆辅助驾驶领域具有较好的鲁棒性和适用性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号