首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 840 毫秒
1.
基于怠速提升的DPF再生温度控制方法研究   总被引:1,自引:0,他引:1  
在DPF主动再生过程中,如果柴油机运行工况突降至怠速状态,会使DPF内部温度峰值和温度梯度迅速升高,易导致DPF出现烧熔现象,针对该问题,进行了基于怠速提升的DPF主动再生温度控制的试验研究。结果表明:再生过程降至怠速工况时,载体出口端中心附近的温度和温度梯度升高幅度最大;随着怠速的提升载体的温度峰值和温度梯度逐渐降低,怠速提升至1 100r/min时,最高温度峰值由820℃左右降至632℃左右,降低了约22.9%,最大温度梯度由30℃/cm左右降至10℃/cm左右,降低了约66.7%。  相似文献   

2.
基于某国六柴油机搭建后处理系统试验台架,研究了堇青石DPF在急降怠速(DTI)过程中的主动再生特性,探究了碳载量对DTI再生温度特性的影响以及DTI试验后的DPF瞬态排放特性。结果表明:DTI再生过程中载体内部温度分布极不均匀,峰值温度出现在DPF后端的中环处;碳载量对DTI再生温度及PM和PN排放有显著影响,当碳载量达到7 g/L时,峰值温度达到1 394.1℃,最大温度梯度达到139.0℃/cm, PN排放超过国六限值10倍以上,而PM排放虽有明显升高,仍在较大裕量内满足国六限值。当超过堇青石陶瓷材料的耐受温度和温度梯度极限时,DPF具有很大的熔化和开裂风险,需要合理选取再生极限碳载量以保证可靠性。  相似文献   

3.
建立了模拟柴油机颗粒物过滤器(DPF)再生过程的多通道模型并进行模拟,模拟结果和实验结果吻合良好.在此基础上考察了DPF进口气体不均匀性对热再生性能的影响.结果表明:进口处气体流速不均匀分布会延长再生时间、推迟和提高温度峰值;进口处气体温度不均匀分布会延长再生时间、推迟并降低温度峰值.因此,在设计DPF时应力求进口处气体的温度和速度均匀分布.  相似文献   

4.
采用1D数值模拟软件AVL BOOST,建立柴油机催化型柴油颗粒捕集器主动再生反应模型,研究降怠速再生(DTI)期间初始碳载量、再生温度、再生/怠速流量、再生/怠速氧含量、怠速进入时刻等因素对DPF峰值温度和峰值温度梯度的影响规律.结果表明:随着初始碳载量、再生温度和氧含量增加,峰值温度、峰值温度梯度和炭烟反应量均增加...  相似文献   

5.
在柴油机颗粒过滤器(DPF)再生过程中,温度升高会使气体进一步膨胀,气体黏度增加,气 体流动阻力增大,导致 DPF再生过程中的压降大于初始压降。使用 AVL-FIRE 软件建立了 DPF的 三维再生计算模型,分别模拟了 DPF再生过程中不同炭烟颗粒分布对 DPF的压降、温度和炭烟密度等因素随再生时间变化的过程。研究结果显示,采用不同的颗粒物分布方式能够降低 DPF再生过程中的压降,其中均匀分布的颗粒物所产生的压降最高。DPF 内部积累的炭烟颗粒越靠近入口处, DPF内部的平均温度越高,达到峰值温度的时间也越短。相同的颗粒物分布类型仅导致峰值温度出现的时间有差异,不会对峰值温度产生影响。由于热量在过滤器末端聚集,因此无论采用何种颗粒物分布类型,都会导致过滤器末端处的炭烟颗粒燃烧速度快于前端。  相似文献   

6.
车用柴油机微粒捕集器热再生的一维数值模拟   总被引:1,自引:0,他引:1  
以壁流式蜂窝陶瓷微粒捕集器(DPF)为研究对象,建立了DPF一维热再生过程的数学模型。对陶瓷孔道内微粒(PM)的燃烧过程及其温度分布进行了模拟,结果表明,再生过程进行到一半时,DPF载体的温度达到最大值。设计时必须保证在此温度下DPF的载体壁面不会发生破裂,以免影响其正常工作。  相似文献   

7.
基于柴油颗粒捕集器(DPF)降怠速再生特性,对比研究了碳化硅载体在不同碳载量下通过降怠速再生时的温度特性,得出了碳化硅载体的最大碳载量。试验采用HORIBA SPC-2300颗粒计数器和AVL 472部分流颗粒分析仪测量颗粒物数量(PN),通过对比降怠速再生后的PN与法规限值来判断DPF状态。试验结果表明:随着碳载量的增加,DPF的最高温度和最大温度梯度逐渐增大,而再生效率会随之提升,残余碳载量减少。降怠速再生时,碳化硅载体后端温度高于前端温度,中心温度高于四周边缘温度。碳载量11 g/L时DPF后端中心温度达到1 171℃,再生后进行法规认证循环,DPF对颗粒物的过滤效率显著降低,碳化硅载体出现裂纹,表明碳载量过大,已超过碳载量上限值。  相似文献   

8.
通常可以使用压差传感器估计柴油机微粒捕集器(DPF)中的碳载量,但其在较低排气流量时的非线性和非稳定状态下,准确性会严重下降。为了提高精度,建立了新的碳载量估算方法,以计算DPF中的炭烟累计量,从而提高主动再生触发时间的精度。该模型基于发动机炭烟排放和DPF内的炭烟氧化平衡,由炭烟排放模型、NO2被动再生模型和炭烟高温氧化模型3个子模型组成。测试验证是基于全球统一瞬态试验循环(WHTC)进行的。试验结果表明,在载碳形成过程中,碳载量计算值与实测值的平均误差为4.6%。随着排气温度和NO2浓度增加,被动再生加快,主动再生间隔延长。  相似文献   

9.
CDPF再生性能的试验研究   总被引:2,自引:0,他引:2  
基于外加热源再生性能测试台架,研究了来流参数和灰沉积对催化型柴油机颗粒捕集器(CDPF)再生性能的影响规律,并比较了DPF和CDPF在再生性能上的差异。结果表明:随着来流温度的增加,载体的最高温度和最大温度梯度先保持不变,后迅速增大,再生效率和效能比也逐渐增大;随着来流温度脉冲持续时间的增长,载体的最高温度基本保持不变,最大温度梯度略有增大,再生效率逐渐增大,但效能比却逐渐降低;随着灰沉积量的逐渐增大,载体的最高温度和最大温度梯度基本保持不变,再生效率和效能比却逐渐降低;在来流温度为475℃时,相较于DPF内碳黑基本不发生反应,CDPF内碳黑发生剧烈氧化,最高温度和最大温度梯度升高,再生效率和效能比也随之升高。  相似文献   

10.
采用热物理模拟机Gleeble1500对多组AZ80镁合金试样进行压缩试验,温度范围为250~400℃,应变速率范围为0.01~10s-1。真应力-应变曲线显示,应力迅速达到峰值之后发生软化,峰值应力随应变速率的增加而提高,随试验温度的升高而减小。金相分析表明,变形条件对动态再结晶软化的影响规律描述为:试样压缩60%后,晶粒大小随着应变速率的增加而减小,显微维氏硬度随细化后晶粒尺寸的减小而非线性减小,随应变速率的增加而减小。引入一种包含软化因子的唯象本构模型,并应用多元线性回归方法对相关的系数进行求解,结果发现求解获得的本构方程能够较好地描述AZ80镁合金的流变软化行为。  相似文献   

11.
对柴油机颗粒物捕集器(DPF)的再生效率进行实时和准确的在线预估,可为DPF热再生结束的控制提供判断依据,是实现DPF系统化和高效应用的重要功能。本文基于热再生过程中DPF内碳烟颗粒的氧化反应机理探讨并建立了DPF再生效率计算模型,通过发动机台架试验对模型的化学反应动力学参数进行了校核和辨识,从而得到DPF内碳烟颗粒热再生氧化反应的反应级数为α=1与活化能参数为E_a=107.5 kJ/mol。台架稳态工况和车辆在实际道路行驶工况的试验结果表明,再生效率模型最大计算误差为5.6%,较好满足实际应用需求,为DPF热再生中准确判断再生结束的时机提供了参考。  相似文献   

12.
柴油机微粒捕集器被动再生平衡研究   总被引:1,自引:0,他引:1  
建立了柴油机微粒捕集器(DPF)的三维仿真模型,并验证了模型的准确性。模拟计算了DPF连续被动再生过程中 m (NO2)/m (Soot )比例、排气温度及450℃时 O2浓度对再生平衡的影响。结果表明:排气中m(NO2)/m(Soot)比例为5时再生达到平衡,比例越高越有利于去除微粒物;排气温度越高参与再生反应的O2越多,越有利于DPF再生达到平衡;排气温度为450℃及O2浓度为5%时达到平衡,其浓度越高则再生速率越高。  相似文献   

13.
本文提出了DOC+DPF的后处理技术路线以满足国五排放标准轻型柴油车排放,而为了满足排放DPF面临的最大挑战就是再生问题,本文采用缸内后喷升温方式实现DPF主动再生,并通过台架标定及整车标定优化了DOC、DPF上游温度的控制,并通过试验标定优化了DPF再生过程燃烧模型,满足DPF整车再生。  相似文献   

14.
为了研究燃油添加型催化剂(FBC)对柴油机颗粒捕集器性能的影响,分别使用了不添加和添加FBC的燃油对两套柴油机颗粒捕集器(DPF)进行性能及耐久试验。结果表明:FBC不会影响DPF对颗粒物质量及数量的过滤效率;FBC可以有效协助碳烟燃烧,将DPF平衡点温度从350℃降低到325℃,提高DPF的被动再生能力;FBC可以降低DPF的主动再生温度,将DPF上碳烟的起燃温度由600℃降低到450℃以下,提高DPF再生速率及再生效率,从而提升DPF的主动再生性能;FBC可延长DPF的再生周期,提高DOC+DPF系统的耐久性。  相似文献   

15.
柴油机微粒捕集器(DPF)能降低柴油机的微粒(PM)排放量,文章提出了DPF催化再生技术方案,将氧化催化器(DOC)与DPF相结合,通过DOC催化氧化未燃HC等来提高排气温度达到微粒着火温度500~600℃,点燃微粒从而完成再生过程。以YN4100QB–1A柴油机为研究对象,对不同喷油量下的DPF升温特性进行了试验研究,试验结果表明:当喷油量大于60mL/min时,再生系统能迅速将排气温度提高到500℃以上。可变喷油量的喷油控制方案可使DPF升温平缓,降低再生造成的二次污染。  相似文献   

16.
氧化催化器(DOC)出口温度控制是实现颗粒捕集器(DPF)主动再生控制的关键。本文介绍一种基于神经网络的氧化催化器出口温度控制方法,首先结合DOC系统的实际特征以及DOC传热及化学反应特性建立了一阶延迟DOC出口温度模型,然后在温度模型基础上基于神经网络建立了DOC出口温度预测模型,最后将DOC出口温度预测值作为闭环反馈输入建立反馈控制器计算HC喷射量进而控制DOC出口温度。本方法采用整车试验中连续变化工况来验证,试验结果表明DOC出口温度在DPF再生过程中控制在600±20℃范围内,满足DPF精确再生控制要求。  相似文献   

17.
通过发动机台架试验,在固定发动机排气流量的条件下,试验研究了不同柴油机氧化催化器(DOC)前温度、排气尾管燃油喷射速率、贵金属(PGM)涂层含量时,DOC的碳氢化合物(HC)转化性能;得出DOC性能的变化规律、起喷温度的标定方法、PGM涂层含量对DOC催化器的影响规律。试验结果表明:随着DOC前温度的升高,DOC的HC转化能力增强,碳氢泄漏现象减弱。可通过标定达到柴油机颗粒捕集器(DPF)目标再生温度所需的DOC前温度(起喷温度)随喷油速率的脉谱图确定尾管喷射再生系统的起喷温度。随着喷油速率的增大,起喷温度先逐渐降低,然后缓慢上升。PGM涂层含量增大,DOC的HC转化能力增强,达到DPF目标再生温度所需要的起喷温度减小。PGM涂层含量为A和Bg/L时,达到目标温度所需的最低起喷温度为240~244℃。  相似文献   

18.
通过加蓬Ogooué特大桥砂土地基钻孔灌注桩温度及应变试验,研究了桩基轴心温度场及应变分布与发展规律。结果表明:桩基轴心不同深度的轴向与径向水化热温度包括诱导、快速升温、缓慢升温、迅速降温和缓慢降温5个发展阶段;混凝土初凝至终凝阶段温升速率最大,终凝后8~12h达到温度峰值,进入缓慢降温阶段后桩基轴心温度最终与环境温度接近;水化热对桩基轴向方位温度场影响较小,最大温差1.1℃;建立了温升与温降阶段温度与龄期关系的Boltzmann及指数式模型,计算结果与试验结果吻合较好。桩基轴心同一位置达到应变峰值的时间相对温度峰值具有滞后性,且轴向方位的应变峰值滞后时间随深度增加而增加,轴向最大应变值在相同的水化热温度作用下随深度增加而减少,但轴向残余应变随深度增加而增大。  相似文献   

19.
在氧化型催化转换器(DOC)前端的排气管中喷入柴油,通过提高柴油机尾气温度、燃烧并去除柴油机微粒捕集器(DPF)中的PM,实现了DPF再生。对整个再生过程中尾气成分进行分析和计算,发现碳氢化合物(HC)为主要二次污染物,且排放相对较大。通过试验方法,分别研究喷油流量和喷油时DOC前端排气温度对再生过程中HC排放的影响,并依此提出保温处理、分阶段喷油和低速再生等三项优化措施。优化后再生过程中HC排放降低了68%,且燃油经济性提高了21%。  相似文献   

20.
DPF再生中断是一种异常现象,不及时处理会对车辆正常行驶造成影响。为了减少DPF再生中断发生,本文通过研究和验证增加保温套、增加再生后喷和再生次后喷喷油量等方法来提高DPF入口温度,减少DPF再生中断发生。同时,增设手动再生开关作为DPF再生中断发生后的备用方法,当DPF发生再生中断且碳载量达到警示阈值后驾驶员可以使用手动再生开关来启动DPF手动再生,恢复DPF初始状态,使车辆发生限速限扭事件、DPF堵塞、出现发动机无法启动等极端情况成为小概率事件,保证DPF再生正常进行,车辆正常行驶。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号