首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
针对交叉口延误过大制约着快速公交系统的发展问题,基于车路协同技术,通过预测BRT车辆行程时间并确定到达时间窗在信号周期中的定位,以交叉口总体人均效益最大化为目标,兼顾乘客乘坐舒适性、车辆运行状态、社会车辆交通效益等因素提出了绿灯延长、红灯早断和相位插入等3种BRT单点交叉口信号实时优先控制方法.最后以济南市BRT一号线北园大街无影山路交叉口为背景,基于VISSIM仿真软件进行信号优先控制方案的验证,结果显示:该方案可以使交叉口人均延误平均降低18.60%,BRT车辆运行速度平均提升7.28%.  相似文献   

2.
在由智能网联汽车(CAV)与网联人工驾驶汽车(CHV)组成的混合交通环境下,以提升网联信控交叉口的行车效率、降低燃油消耗量为目标,设计了网联信控交叉口场景,在完成车辆运动学、跟驰及油耗建模的基础上,提出了一种基于车辆编队的网联车辆协同诱导策略,以平均行驶延误时间和平均燃油消耗量为评价指标,基于SUMO平台完成仿真测试。测试结果表明:在稀疏、欠饱和及过饱和交通流量条件下,随CAV渗透率的提升,通行效率和燃油经济性不断提高;在CAV渗透率低于60%时,CHV驾驶员服从度对协同行车诱导策略性能的影响更为显著。  相似文献   

3.
车路协同环境下信号交叉口车速引导建模与仿真   总被引:1,自引:0,他引:1  
目前交通自适应控制策略中预测交通流到达的方法多为基于车流行驶速度服从统一分布而获得,其效率与可靠性等方面存在不足.文中利用车路协同环境下实时车车、车路通信,基于实时信号状态、排队长度、车辆位置、加速度等参数,以交叉口车辆停车时间最小化为目标,提出面向个体车辆的车速引导机制与模型,有效弥补了上述缺陷.以上海市曹安路嘉松北路交叉口为例进行仿真验证,结果表明,在高饱和状态下,文中模型能有效降低交叉口车均延误30%,减少交叉口平均停车次数60%,在中、低饱和状态下的效益更佳.  相似文献   

4.
信号交叉口是影响交通系统运行安全和效率的关键。在国家新基建战略的提出以及车路协同技术不断发展的环境下,合理设置网联自动驾驶车辆(Connected and Autonomous Vehicle,CAV)专用进口道,对信号交叉口进口道处不同网联类型的车辆进行科学的交通组织,能够提高交叉口的通行能力,降低行车延误,促进城市交通系统效率与安全的双提升。建立协同自适应巡航控制(Cooperative Adaptive Cruise Control,CACC)车辆跟驰模型和GM (General Motor)模型分别描述混行环境下网联车辆与非网联车的跟驰行为,以提高进口道通行能力、降低延误和油耗为优化目标,采取敏感度分析方法,提出不同CAV比例、进口道车道数、交通量和信号配时方案组合情况下CAV专用进口道的动态设置条件,适用于不同交通状况的信号交叉口,具有较强的普适性。数值仿真结果表明:采用该方法设置CAV专用进口道能够提高混行信号交叉口的通行能力、降低延误和车均油耗;在实际应用时,可视交叉口类型和交通智能化程度灵活选取CAV专用进口道设置方式,为混行交通流环境下交叉口进口道的交通组织优化提供理论依据和模型支持,对车路协同系统的相关研究具有参考意义。  相似文献   

5.
为解决信号交叉口区域车辆频繁启停及怠速停车造成的燃油浪费和污染物排放问题,研究了以节能为导向的信号交叉口的生态驾驶策略问题.借助交叉口区域的V2I通信系统获得车辆自身定位和运动状态数据,以及信号灯状态与配时信息,对车辆所处车速引导场景及可通行性进行判定.对各场景下车辆时空运动轨迹进行分析,综合考虑交叉口上下游的燃油消耗,以平均每公里油耗最小建立统一的优化目标函数,求得生态驾驶轨迹最优解,以向驾驶员提供车速建议.利用M atlab开展的随机仿真实验表明,与不采用生态驾驶车速引导相比,采用生态驾驶车速引导至少可降低10% 以上的燃油消耗.对于划分的6种车速引导场景而言,最优生态驾驶策略在场景2下的节油效果最为显著,可达到30% ~60%;其次是场景4,可达到25% ~50%;在场景3和场景5中表现略差.从节约能源的角度而言,车辆在通过信号交叉口时应尽量避免停车等待,防止发动机长时间空转造成的燃油浪费,必要时可采取适当加减速的方式通过交叉口.   相似文献   

6.
针对现有的车速引导模型存在未综合考虑车辆跟驰行为、引导场景划分较粗略等问题,研究了4种基于车路协同环境下实时优化各车的车速引导模型。对车辆进行所属车辆列队划分,考虑车速引导影响对FVD跟驰模型进行改进。以车辆列队为引导单元,将车辆可能面临的交通状况细分为8种引导场景,以引导车辆不停车或少停车通过交叉口为目标,直接优化车辆加/减速度,建立车辆列队后车根据改进的跟驰模型计算目标跟驰加/减速度,并与头车组成列队以同一目标车速通过交叉口停车线的4种车速引导模型。以南昌市海棠北路/枫林西大街交叉口为例进行仿真验证,结果表明,所提出的车速引导模型能使车辆行程时间减少18.9%,最大排队长度减少58.8%,延误减少60.8%,燃油消耗减少36.4%,且适用于不同交通饱和状态,对提高信号交叉口通行效率和减少车辆燃油消耗有显著效果。   相似文献   

7.
本文中提出了一种考虑信号交叉口等待时间的车辆最优路径规划算法。通过GPS采集的浮动车数据与电子地图进行匹配,实时计算出各路段的车辆平均行驶速度和通行时间。基于马尔科夫链构建信号交叉口红绿灯的概率模型,通过车路协同技术预先获取各路段交叉口信号灯的位置和相位配时信息,并在车辆接近交叉口时对车辆速度进行优化,将车辆加速通过交叉口视为绿灯时间的延长,并以此构建车辆快速通过交叉口的等待时间模型。在此基础上,结合A*算法,提出一种考虑快速通过信号交叉口的改进A*算法。最后选取长沙市区某路网为算例进行仿真分析,结果表明改进A*算法所得路径的通行时间明显短于传统A*算法。  相似文献   

8.
车路协同环境是利用无线通信技术、电子信息技术等高新技术建立的新颖交通环境,其以车车、车路通信为基础,有效实现了信息在系统内部的快速、准确、有效的传输,弥补了目前交通基础数据实时性、可靠性等方面存在不足.利用车路协同环境下,在单车车速引导的基础上,以交叉口整体效益最佳为目标,提出信号交叉口多车协同车速引导模型,以最大限度地降低交叉口车均延误,减少平均停车次数,提高绿灯时间利用率.同时,以上海市曹安路-绿苑路交叉口为例进行仿真验证,研究结果表明,相比于单车引导而言,多车协同引导可适用于高、中、低等不同饱和状态,且可有效降低交叉口车均延误及平均停车次数.   相似文献   

9.
由于车路协同系统(CVIS)还无法完全应用于现实中,文中在5个假设的前提下以总延误最小为目标提出了4条交叉口信号控制方案设计原则和设计方法。该方法通过同时采集到的交叉口每个进口道的车流量来同时进行渠化设计和信号配时设计。结果表明,所建立的交叉口信号控制方法在一定程度上优于现有的交叉口信号控制方法。  相似文献   

10.
针对现有道路交叉口环保驾驶研究中未充分结合交通状态、未充分考虑道路交叉口冲突区域等问题,基于车联网(V2X)技术,研究提出了一种道路交叉口环保驾驶汽车路径优化控制模型。该模型提前采集前方道路交叉口交通信号灯控制时间信息,并在交叉口前设置控制区域,整个控制过程分为两个阶段:首先,以最低燃油消耗和排放最低为目标,对进入控制区域的车辆进行速度规划,确保以最为环保的方式通过信号灯;其次,以最大程度避开交叉口冲突点为目标,对进入交叉口的车辆进行通行速度规划,使车辆最大程度回避分流冲突点、交叉冲突点、合流冲突点。通过两个阶段的路径规划与控制,实现车辆整体上以最环保的方式通过交叉口的目的。为了验证模型的有效性,搭建了Python和Vissim集成的仿真平台进行仿真,设置了不同的交通流状态场景,并和Webster信号配时下,不受其他控制器控制的车辆进行了燃油消耗和排放对比。试验结果显示,相比于Webster信号配时下,不受其他控制器控制的车辆,受路径规划控制模型控制车辆的燃油消耗降低了42.7%,CO排放量减少了4.26%,表明研究构建的路径规划控制模型是一种有效的道路交叉口环保驾驶路径优化控制策略,可以为车联网条件下车辆环保驾驶提供依据。  相似文献   

11.
基于公交运行车速动态可变的运行环境,以公交运行状态最优为目标,提出了“最大可能优先通行”和“最优速度节能减排”2个控制原则;考虑公交车辆位置、车辆是否晚点、车辆速度、速度变化幅度、车辆到达时刻、信号控制参数变化范围等约束条件,针对需要优先通过和不需要优先通过2种情形,设计了信号控制方案和最佳速度调整规则簇,建立了运行速度与优先控制方案的协调优化方法.基于VISSIM仿真软件及其二次开发COM接口,设计了车路协同下信号优先控制的仿真平台,并对1个四相位信号控制交叉口进行了仿真分析.结果表明:与无优先和传统的感应优先相比,所提出的方法在降低公交车延误,恢复时刻表偏离,减少能源消耗,降低污染物排放和减小对于其他社会车辆影响上有显著的提高;参数敏感性分析进一步证明了不同交通量情况下该模型的适应性.  相似文献   

12.
项乔君  王炜  陆键 《公路交通科技》2004,21(12):100-102
介绍汽车燃油消耗微观模型,分析信号交叉口汽车燃油消耗的影响因素,提出基于汽车燃油消耗微观模型和信号交叉口延误分析技术的汽车燃油消耗分析方法和步骤。将微观模型与宏观分析方法相结合,揭示信号交叉口汽车燃油消耗的基本规律,得出信号交叉口汽车燃油消耗与交通量的关系,以及信号交叉口各种汽车燃油消耗所占的比例。  相似文献   

13.
建立了一套基于预测的公交信号优先干线联动控制方法。考虑到公交车辆在停靠站的停留时间受到多重因素的综合影响,首先构建了ARIMA-SVR的组合模型用于预测公交车辆的站点延误,并以此为重要依据,预测了公交到达交叉口的时间。通过比较车辆预计到达时间与理想时间的差值,计算了延伸和压缩信号周期的惩罚因子,根据惩罚因子的大小调整了信号周期和绿灯时间。在进行交叉口间协同控制时,又将交叉口平面设计的物理条件和交叉口群的协同控制条件纳入对信号的调整进行约束。为了验证该方法的实际应用效果,为某城市快速公交工程实例设计了VISSIM信号优先模块。研究结果表明:组合模型预测公交车辆站点延误的相关系数为0.890 4,预测精度较好;在改进的信号优先算法的情况下,公交交叉口延误比现状降低近50%,公交车车头时距一致性平均下降38.8%,且该算法为信号调整提供了较为充足的缓冲空间,在绿灯时间调整时兼顾考虑了对社会车辆的影响,因此,在预测式信号优先中,社会车辆的行驶延误和交叉口排队长度也较其他优先方法有所降低。  相似文献   

14.
城市交通信号灯两级模糊控制及仿真研究   总被引:5,自引:0,他引:5  
在分析城市交通信号控制研究现状的基础上,设计了单交叉口两级模糊控制系统。控制器通过检测器获得的各车道交通流量和排队长度来判断各个相位的交通强度,进而决定是否延长或终止当前的信号相位。以通过交叉口的平均车辆延误作为评价指标来衡量该控制器的控制性能,并采用Matlab编程实现了交叉口四相位的仿真系统。仿真结果表明,该方法能有效降低通行车辆在交叉口的平均延误,优于传统的感应控制方法。  相似文献   

15.
为验证信号交叉口环保驾驶的应用价值,并分析不同因素对环保驾驶效果的影响,构建了环保驾驶车辆与非环保驾驶车辆混行环境下的驾驶仿真平台,并制定了合理的仿真驾驶测试方案.测试过程中采集了不同驾驶员所驾车辆的运动数据,并利用VT-Micro微观车辆燃油消耗与污染物排放模型实时计算车辆的燃油消耗与污染物排放.结果表明,环保驾驶能有效降低10% 以上的车辆燃油消耗与污染物排放;驾驶员性别、年龄对车辆环保驾驶效果无影响;驾驶员接受环保驾驶的最佳驾龄为4~6年;驾驶员环保驾驶训练时长与车辆环保驾驶收益呈显著的正相关关系,且不应低于60 min;信息系统界面宜采用车辆速度曲线表形式;非环保驾驶车辆通过跟驰环保驾驶车辆可获得一定的环保收益;系统整体的环保驾驶收益随环保驾驶车辆的占比上升而增高.   相似文献   

16.
为缓解信号交叉口区域交通拥堵与污染物排放问题,建立了考虑能效均衡的信号交叉口车辆上下游协同轨迹优化模型。根据信号灯相位配时建立上游区域车辆通行预判模型,基于能源消耗与通行效率建立车辆上下游协同轨迹优化策略,采用带精英策略的非支配排序遗传算法求解多目标优化模型的最优速度曲线,并与无引导方法、三角函数优化法进行了对比试验,结果表明,采用所提出的多目标优化引导算法最大可减少交叉口上下游区域的燃油消耗量21.05%,缩短行程时间13.85%,具有更好的适应性和鲁棒性。  相似文献   

17.
针对现有交叉口左转车流与直行车流交叉冲突,车流不连续,运行效率低的问题,选取国外多个城市已经投入使用并取得良好效果的连续流交叉口为分析研究对象。介绍了连续流交叉口基本概念,在连续流交叉口车流组织和信号控制方案的基础上,利用Vissim仿真软件构建了连续流交叉口运行仿真模型,选取车辆延误为评价指标,对连续流交叉口的通行效率进行了评价分析。研究结果表明:随着连续流交叉口主信号交叉口与预信号交叉口间距的不断增加,左转车辆的平均延误没有明显变化,而直行车辆的车均延误缓慢增加;连续流交叉口左转车辆的车均延误较传统交叉口减少25%;直行车辆的车均延误较传统交叉口减少45%。  相似文献   

18.
当BRT车站濒临交叉口时,上游交叉口的信号控制易影响下游车站的进站排队,进而影响车辆在车站的延误;以车辆在交叉口的延误和在车站的延误总和最小为目标,采用动力学、信号控制和交通流等方法建立交叉口的信号配时优化算法,并用Visual Basic实现算法。以广州市中山大道BRT的车陂交叉口与车陂站为案例,用Vissim仿真验证算法。仿真结果表明算法的正确性与实用性,实现了车辆的总延误最小。  相似文献   

19.
有轨电车信号优先控制对交叉口车辆通行效率和安全至关重要。文中通过VISSIM仿真系统的VisVAP感应信号控制模块,设计基于共享相位的有轨电车相对信号优先绝对信号优先控制方案,对路中敷设、半独立路权的十字形有轨电车线路交叉口的平均车辆延误、排队长度及停车次数等指标与定时信号进行比较。结果表明,采用共享相位条件下的相对信号优先控制能较好地兼顾有轨电车与社会车辆在交叉口的通行效率。  相似文献   

20.
自适应信号控制下交叉口延误计算方法研究   总被引:2,自引:0,他引:2  
为了研究交通信号的自适应控制方法,需要对交叉口延误进行定量的分析与计算。本文根据信号交叉口理论,在以往定时信号延误研究的基础上,基于交叉口一个进口方向的车辆延误分析,推导了信号控制交叉口不同交通运行状况下的交叉口延误公式;进而对自适应信号控制下交叉口延误的计算方法进行了研究,提出了自适应信号控制下交叉口延误的计算方法———根据交叉口各进口方向不同的交通运行状况以及所处的相序选择相应的公式计算交叉口各进口方向的车辆延误,然后对其求和,得到交叉口延误。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号