首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
气门间隙是指在气门处于完全关闭状态下摇臂碰头与气门杆尾部(顶置式)之间的间隙.发动机气门间隙一般在0.20~0.45mm之间,但也有的发动机气门间隙小到0.08mm,大到0.8mm.  相似文献   

2.
问与答     
《驾驶园》2008,(10):62-63
问:怎样检修气门、气门导管、气门座和气门弹簧?答:1、气门与气门导管的检修检修气门与气门导管时,首先要检测气门与气门导管的配合间隙。用内径百分表测量气门导管内径。用外径千分尺测量气门杆的外径。其配合间隙为:气门导管内径与气门杆外径之差的标准值为进气门:0.04~0.09mm,排气门:0.045~0.10mm,超过规定值时,应更换气门或气门导管。此外,气门杆弯曲会使气门在导管内运动时出现卡滞而造成气门关闭不严,对此应校直气门杆或更换新气门。  相似文献   

3.
汽车大修热试或行驶中,常常会出现气门挺杆响,若不及时消除,将会造成凸轮不正常磨损,挺杆损坏,影响发动机正常工作。气门挺杆响情况较复杂,除因气门挺杆与挺杆孔配合松旷外,发响的挺杆多数是转动不正常、不转或摆动。拆检时发现下列各种现象: 1.凸轮及挺杆球面硬度较低,造成严重磨损,尤以凸轮尖部最重。2.气门挺杆球面弧度不对,凸轮轮廓不标准,凸轮锥度不正确,光洁度低,挺杆球面与凸轮接触不均匀,其表面有拉伤痕纹及烧蚀、熔焊现象。3.气门挺杆杆部与挺杆孔配合松旷,光洁度低,精度低,失圆及锥度过大。4.气门弹簧过硬。5.润滑油使用不适当。为了消除上述不正常现象,必须掌握凸轮轴及气门挺杆的技术条件及合理的修理工艺,  相似文献   

4.
张学波  龙心义 《摩托车》2012,(22):21-33
气门杆磨损利用千分卡尺测量气门杆的外径,如果超出了规定,应予以更换。若气门杆外径在规定范围之内,而气门杆不能偏转,则应更换气门导套。更换气门或气门导管后,重新检查偏转度。如图29所示。所用工具:千分卡尺(0—25mm)气门杆外径(O.D)内:5.475~5.490mm  相似文献   

5.
1.不拆气缸盖更换气门弹簧东风6100型汽油发动机系顶置式配气机构,要是出现气门弹簧折断、弹簧变形或弹簧座磨损等毛病,若拆气缸盖换件,既费时、费力,又浪费材料。因此,在小修过程中,如经确定只需换气门弹簧或气门弹簧座。可用一把200mm或250mm的废旧起子,弯成“(?)”形状,拆下火花塞、气缸盖罩、气门调节螺钉,取下推杆,推开摇臂,再徐徐摇转发动机使活塞到上止点。一人用“(?)”形起子从火花  相似文献   

6.
1.气门及气门座圈的检修清洗气门后,检查气门头部是否损坏,如发现气门头部有翘曲、裂纹、凹坑或磨损严重时,应予以更换。检查和测量气门杆外径,如杆部损伤或磨损严重、端部磨损出现凹坑、锁片(块)磨损,均应予以更换。对于B系列和C系列柴油机,气门杆外径不得小于7.94mm;对于N系列柴油机,气门杆外径不得小于l1.405mm。  相似文献   

7.
四、配气机构 1.进气门盘部直径为φ37mm,排气门盘部直径为φ31.5mm,气门杆部不应有变形,盘部应无裂纹;盘锥面锥角为45°0′± 5′;盘部外圆的厚度应不小于0.50mm。 2.气门间隙:先调好皮带的松紧度后,发动机冷态时,其间隙为0.140~0.170mm。 3.进气门导管孔径为φ8_( 0.022)~( 0.040)mm,进气门杆部为φ8_(-0.015)mm;其配合间隙为 0.022~ 0.055mm,极限  相似文献   

8.
王敏 《装备维修技术》2009,(1):21-21,27
分析了内燃机气门头厚度对气门座磨损及其下陷量对燃烧性能的影响,气门和气门座接触面宽度与烧蚀、斑点形成的关系,气门落座拍击压强与耐磨性。对原配对互研工艺进行了改进,从保证气门落座压强及避免气门头弹性变形磨损等方面提出了改进意见。  相似文献   

9.
在汽车维修中,发现伏尔加轿车气门有很多是国产件代用。但应注意气门脚间隙的调整。标准不能按原车规定。 伏尔加轿车使用说明书规定,第1、8个气门脚间隙为0.30~0.35mm,其余气门均为0.40~0.45mm。这比同类  相似文献   

10.
降低汽油机部分负荷泵气损失需要灵活的可变气门机构,凸轮驱动式液压可变气门具有较好的应用前景,但依然面临压力波动和气门落座速度难以控制等问题。本文中通过调节节流阀开度使0~4 800 r·min~(-1)的气门升程在0~8.2 mm范围内连续可变,仿真探究了活塞直径对压力波动和节流孔径对气门落座速度的影响,并据此确定了活塞直径和节流孔径,试验研究了液压油温度对气门运动特性和气门落座速度的影响规律。研究发现:适当增大活塞直径能降低系统工作压力并减小压缩波峰值,有利于降低压力波动,最终选取挺柱和气门活塞直径分别为17和14.5 mm,小于1.6 mm的节流孔径可使4 000 r·min~(-1)时的气门落座速度小于0.5 m·s~(-1)。转速不变,气门最大升程随节流阀开度的增大而逐渐降低;相同节流阀开度,转速越高气门最大升程越大,节流阀开度越大,不同转速时的最大升程差异也更大。节流阀全关,液压油温度对升程的影响很小;相同节流阀开度,随液压油温度升高,气门腔压力和气门最大升程逐渐降低。气门落座速度对液压油温度不敏感,不同温度的气门落座速度方差仅为4.9%。  相似文献   

11.
研究了OTEVA70SC弹簧钢的化学成分、非金属夹杂物、显微组织、力学性能及气门弹簧喷丸强化工艺、热强压工艺和气门弹簧疲劳性能、台架耐久性能等,分析和讨论了材料化学成分、纯净度对气门弹簧用钢性能的影响和喷丸强化工艺、热强压工艺对气门弹簧性能的影响。结果表明,OTEVA70SC弹簧钢具有高纯净度、高强度及良好的韧性,气门弹簧在制造过程中采用优化的喷丸强化工艺和热强压工艺,使气门弹簧获得高的疲劳性能和使用性能。  相似文献   

12.
对失效气门的断口、硬度和金相组织以及与气门机构相关的零件进行了分析,结合气门的工作条件及生产与 装配工艺,将气门的主要失效形式归纳为七大类,并提出相应的改进措施,取得了明显的效果。  相似文献   

13.
d)由于气门弹簧多为高碳锰钢或镍铬锰钢丝,经冷绕成型后再将其两端面磨平,因此对气门弹簧的垂直度要求较高,一般不得大于3。,相当于高36~40 mm的气门弹簧倾斜1.6mm。气门弹簧有异响时,可拆卸气缸盖组件,检测气门弹簧的垂直度:先将内、外弹簧放置在同一平板上(平玻璃即可),用直角尺测量。  相似文献   

14.
3.通过大幅度降低进气门升程控制涡流比 本田公司VTEC-E系统实际上是一种可变进气门电子控制系统,用于4气门稀薄燃烧汽油机,有一个主进气门和一个副进气门,见图5。主进气门的升程为8mm,不可变。副进气门可有两种气门升程:发动机低工况时,副进气门升程只有0.65mm,通过气门和气门座之  相似文献   

15.
在FQM-1型气门、气门座模拟摩擦磨损试验机上,进行了一系列CA6102发动机气门与气门座的配合性能试验。对21-4N气门材料与V431、V431-Nb+Ti、高MnAl、粉末治金及表面镶CrN等各种材料气门座的配合性能做了全面的试验研究,得出了材料、工艺等因素对气门、气门座耐磨性的影响规律。  相似文献   

16.
针对现存的气门零件CAPP系统存在难以对企业经常生产的气门零件直接分组建立数据库的问题,基于成组技术开发了气门零件分组程序。针对进行气门零件CAPP系统特征匹配后不能明确指出现存工艺文件所需修改位置的问题,基于数控技术拟出了气门零件特征与机加工的关系并做出新的气门零件特征匹配程序。  相似文献   

17.
基于ADAMS的四气门配气机构优化设计   总被引:1,自引:0,他引:1  
用ADAMS/View对某型号车用柴油机的配气机构进行了仿真分析,发现四气门配气机构中气门运动不同步的现象,增大了气门与气门导管之间的摩擦力,影响气门的升程,最终影响配气机构的性能。结合实际测量的结果,分析了这种不同步原因及对气门组的可靠性影响,讨论了减小运动不同步的方法,建立目标函数对所分析的配气机构进行了优化设计。优化后的配气机构改善了气门的不同步现象.减小了气门轭与摇臂之间的滑移距离及气门与气门导管之间的摩擦力,减少了气门轭的偏转,配气机构性能得到了提升,而且用虚拟样机技术缩短了产品的设计周期。  相似文献   

18.
气门是发动机中的重要零件,工作中承受交变负荷、高温和化学腐蚀,极易损坏。当发动机长时间使用或长时间超负荷运行而功率下降、经济指标恶化时,更应检查气门锥面密封是否良好。 气门的损坏有锥面磨损而出现沟槽,因烧蚀而出现凹坑、麻点或结炭;因长期使用杆部磨损变细或受力变形弯曲;杆端因磨损而使平面破坏等几种情况。 使用中的气门杆部直径差通常不大于0.01mm,当过  相似文献   

19.
一种连续可变气门升程机构的动力学仿真   总被引:1,自引:0,他引:1  
设计了一种连续可变气门升程(CVVL)机构,气门升程可在0~9.5 mm连续可变,为该CVVL机构设计计算了凸轮型线和中间摇臂型线。利用GT‐Power对该机构进行了动力学仿真,结果表明:在所有气门升程下,气门具有相同的开启、落座缓冲段,气门动力学性能良好;凸轮与滚轮接触应力偏大,分析了应力偏大的原因,并指出优化方向。  相似文献   

20.
EA113发动机5气门缸盖的技术要求高、加工工艺复杂。对5气门缸盖及其主要技术要求作了详细介绍,给出了其工艺流程,并对重点工序的工艺特点作了分析与探讨,归纳出该缸盖的工艺特点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号