首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Submerged vanes are installed on rivers and channel beds to protect the outer bank bends from scouring. Also, local scouring occurs around the submerged vanes over time, and identifying the effective factors on the scouring phenomena around these submerged vanes is one of the important issues in river engineering. The most important aim of this study is investigation of scour pattern around submerged vanes located in 180° bend experimentally and numerically. Firstly, the effects of various parameters such as the Froude number (Fr), angle of submerged vanes to the flow (α), angle of submerged vane location in the bend (θ), distance between submerged vanes (d), height (H), and length (L) of the vanes on the dimensionless volume of the scour hole were experimentally studied. The submerged vanes were installed on a 180° bend whose central radius and channel width were 2.8 and 0.6 m, respectively. By reducing the Froude number, the scour hole volume decreased. For all Froude numbers, the biggest scour hole formed at θ?=?15°. In all models, by increasing the Froude number, the scour hole volume significantly increases. In addition, by increasing the submerged vanes’ length and height, the scour hole dimensions also grow. Secondly, using gene expression programming (GEP), a relationship for determining the scour hole volume around the submerged vanes was provided. For this model, the determination coefficients (R2) for the training and test modes were computed as 0.91 and 0.9, respectively. In addition, this study performed partial derivative sensitivity analysis (PDSA). According to the results, the PDSA was calculated as positive for all input variables.  相似文献   

2.
The present review examines the research literature on Non-Technical Skills (NTS) used by ships’ bridge officers in connection with navigation. The aim of the study was to (i) identify the cognitive and interpersonal skills which have been the focus of previous studies and (ii) explore how the content of these skills has been described. Databases searched included Academic Search Premier, PsycINFO, Science Direct, and Web of Science. Nineteen studies were included in the review. Five NTS were identified: situation awareness (SA), decision-making (DM), workload management (WM), communication, and leadership. In addition to discussing each skill, the review raises four overarching issues with the present literature for the bridge domain: (1) Have all the relevant skills been subject to exploration? (2) Have the skills identified been explored in detail? (3) There seems to be an uneven distribution of research between cognitive and interpersonal skills. (4) There is little research into understanding the skills as a complete taxonomy. Knowledge on how the skills are linked and interplay with one another is incomplete. Overall, further research on all these aspects of NTS in the maritime domain could increase scientific understanding and contribute to bridge operational practice and to the further development and evaluation of NTS training such as Bridge Resource Management (BRM).  相似文献   

3.
Ship resistance issues are related to fuel economy, speed, and cost efficiency. Air lubrication is a promising technique for lowering hull frictional resistance as it is supposed to modify the energy in the turbulent boundary layer and thereby reduce hull friction. In this paper, the objective is to identify the optimum type of air lubrication using microbubble drag reduction (MBDR) and air layer drag reduction (ALDR) techniques to reduce the resistance of a 56-m Indonesian self-propelled barge (SPB). A model with the following dimensions was constructed: length L?=?2000 mm, breadth B?=?521.60 mm, and draft T?=?52.50 mm. The ship model was towed using standard towing tank experimental parameters. The speed was varied over the Froude number range 0.11–0.31. The air layer flow rate was varied at 80, 85, and 90 standard liters per minute (SLPM) and the microbubble injection coefficient over the range 0.20–0.60. The results show that the ship model using the air layer had the highest drag reduction up to a maximum of 90%. Based on the characteristics of the SPB, which operates at low speed, the optimum air lubrication type to reduce resistance in this instance is ALDR.  相似文献   

4.
The aim of this study is to calculate hydrodynamic performance and ventilation flow around wedge, 2D blade and 3D surface piercing propeller (SPP), using computational fluid dynamic based on Reynolds-averaged Navier–Stokes method. First, numerical analyses for two-phase fluid flow around the wedge and 2D blade section (cupped and non-cupped) are presented. Flow ventilation, pressure distribution and forces are determined and compared with experimental data. Then, the method is extended to predict the hydrodynamic performance of propeller SPP-841B. The propeller exhibits a cupped blade. In the simulated configuration, SPP is one-third submerged (I = h/D = 0.33) and is working at various loadings with full ventilation occurring at low advance coefficient (J). The open water performance, pressure distribution, forces/moments and ventilation pattern on the SPP-841B model are obtained and compared with experimental data. The numerical results are in good agreement with experimental measurements, especially at high advance coefficient.  相似文献   

5.
This study evaluates the capability of the Simulating WAves Nearshore (SWAN) wave model (version 41.01) in predicting significant wave height and spectral peak energy content for swell waves in very shallow water of surf zone during depth-induced wave breaking and dissipation. The model results were compared with field measurements at five nearshore stations. The results demonstrated that some breaker index formulations were successful for significant wave height prediction in surf zones. However, an incorrect shape of the energy spectrum and overestimated near spectral peak energy content at shallow water stations were obtained using all of the embedded depth-induced wave breaking formulations in SWAN. The dependent breaker index on relative depth (Kpd) formulation, which was successful in predicting near spectral peak energy content, resulted in an average error of 30%. Finally, this formulation was modified to enhance the model performance in reproducing the spectral peak energy content.  相似文献   

6.
This study examines the hydrodynamic performance of multiple-row vertical slotted breakwaters. We developed a mathematical model based on an eigenfunction expansion method and a least squares technique for Stokes second-order waves. The numerical results obtained for limiting cases of double-row and triple-row walls are in good agreement with results of previous studies and experimental results. Comparisons with experimental measurements of the reflection, transmission, and dissipation coefficients (C R , C T , and C E ) for double-row walls show that the proposed mathematical model adequately reproduces most of the important features. We found that for double-row walls, the C R increases with increasing wave number, kd, and with a decreasing permeable wall part, dm. The C T follows the opposite trend. The C E slowly increases with an increasing kd for lower kd values, reaches a maximum, and then decreases again. In addition, an increasing porosity of dm would significantly decrease the C R , while increasing the C T . At lower values of kd, a decreasing porosity increases the C E , but for high values of kd, a decreasing porosity reduces the C E . The numerical results indicate that, for triple-row walls, the effect of the arrangement of the chamber widths on hydrodynamic characteristics is not significant, except when kd<0.5. Double-row slotted breakwaters may exhibit a good wave-absorbing performance at kd>0.5, where by the horizontal wave force may be smaller than that of a single wall. On the other hand, the difference between double-row and triple-row vertical slotted breakwaters is marginal.  相似文献   

7.
Temporal fluctuations in vertical thermocline structure and depth span (on a time scale of 30 to 40 min) are shown to affect the arrival angle, and focusing of measured broadband (22–28 kHz) non-surface-interacting acoustic signals at a depth of ~100 m. Measurements were taken in the Pacific Missile Range Facility near Kauai island, Hawaii, for a source-receiver range of 1.0 km. The arrival time and angular spread of acoustic beams are obtained for measured signals using a plane wave beamformer with a-prior gaussian weighting. The weighting process reduces ambiguity in angular measurements due to spatial aliasing from a vertical array with element spacing d much greater than half the acoustic wavelength \( \left(\frac{\lambda_{\mathrm{a}}}{2}\right) \) of the highest frequency in the broadband signal. Over two full periods of thermocline oscillation, 2 times of high and 2 times of low isotherm depth are selected to show fluctuations in angular beam spreading, focusing, and the robustness of the weighted beamformer routine. To benchmark the performance of the weighted beamformer, a two-dimensional (2D) Parabolic Equation (PE) model calculates the angular signal spread and focusing using parameters to satisfy spatial sampling requirements for broadband beamforming. In the absence of spatial aliasing, beamforming the output of the 2D PE can be conducted without weighting. Comparison of measured and modeled results shows less than a degree of difference in the angular beam spread of direct, bottom reflected, and refracted paths. It is shown that a vertical array with \( d\gg \left(\frac{\lambda_{\mathrm{a}}}{2}\right) \) and gaussian weighting can resolve changes in angular spread and beam focusing as a function of vertical isotherm displacement.  相似文献   

8.
The maritime industry is considered to be a backbone of the global economy. It is therefore imperative to ensure that maritime operations run safely and efficiently. Assessment of maritime performance is necessary for designers and engineers to be able to pinpoint the weakest links in the system and make impactful system improvements. The current article presents a systematic quantitative literature review of research on performance assessment in the maritime industry with the goal of establishing an understanding of accuracy and consistency in the development of methods used to assess performance. The review focuses on four major segments within the industry—port logistics, ship handling, safety and environmental research—and investigates their uses in developing accurate and consistent performance assessment methods. After the completion of an exclusion process, 62 articles published in a wide range of academic journals were used in the analysis. Two important conclusions were drawn from the analysis. First, performance assessment is generally consistent throughout the maritime industry; most papers used accurate and consistent approaches to develop the methods (n?=?43). A subsequent bivariate analysis revealed a call for increased attention to the development of assessment methods within the maritime segment of ship handling. The current study suggests and discusses certain directions with regard to assessment research in the maritime industry.  相似文献   

9.
Multihull ships are widely used for sea transportation, and those with four hulls are known as quadramarans. Hull position configurations of a quadramaran include the diamond, tetra, and slice. In general, multihull vessels traveling at high speeds have better hydrodynamic efficiency than monohull ships. This study aims to identify possible effects of various quadramaran hull position configurations on ship resistance for hull dimensions of 2 m length, 0.21 m breadth, and 0.045 m thickness. We conducted a towing test in which we varied the hull spacing and speed at Fr values between 0.08 and 0.62 and measured the total resistance using a load cell transducer. The experimental results reveal that the lowest total resistance was achieved with a diamond quadramaran configuration at Fr = 0.1-0.6 and an effective interference factor of up to 0.35 with S/L = 3/10 and R/L = 1/2 at Fr = 0.62.  相似文献   

10.
11.
Vortex-induced motion of two-dimensional circular cylinder was numerically analyzed by using the lattice Boltzmann method. Unlike conventional methods, in which the computational grids are fit to the solid body, the present method adopts rectangular grids and the movement of the solid body was treated by the boundary condition for the simplicity of computation. The hydrodynamic force acting on the cylinder was estimated by integrating the momentum of the fluid over the cylinder surface. The quantitative validation of the simulation results was confirmed for the fixed cylinder at Re = 500. When the cylinder is allowed to move only in the spanwise direction, the resonance between the vortex-shedding frequency and the natural frequency of damping force by spring was confirmed. When the natural frequency is larger than the vortex-shedding frequency, secondary mode appears which may be resulted from the nonlinear effect. Finally, the motion in the streamwise direction is considered as well as the spanwise direction and the characteristic of the cylinder motion in the horizontal direction was demonstrated in relation to the damping force by the mooring. Although the target of the present study is limited to two-dimensional and low Re, the applicability of the lattice Boltzmann method to vortex-induced motion was confirmed.  相似文献   

12.
The value of form factor k at different drafts is important in predicting full-scale total resistance and speed for different types of ships. In the ITTC community, most organizations predict form factor k using a low-speed model test. However, this method is problematic for ships with bulbous bows and transom. In this article, a Computational Fluid Dynamics (CFD)-based method is introduced to obtain k for different type of ships at different drafts, and a comparison is made between the CFD method and the model test. The results show that the CFD method produces reasonable k values. A grid generating method and turbulence model are briefly discussed in the context of obtaining a consistent k using CFD.  相似文献   

13.
Resistance analysis is an important analytical method used to evaluate the hydrodynamic performance of High Speed Craft (HSC). Analysis of multihull resistance in shallow water is essential to the performance evaluation of any type of HSC. Ships operating in shallow water experience increases in resistance because of changes in pressure distribution and wave pattern. In this paper, the shallow water performance of an HSC design concept, the semi-Small Waterplane Area Twin Hull (semi-SWATH) form, is studied. The hull is installed with fin stabilizers to reduce dynamic motion effects, and the resistance components of the hull, hull trim condition, and maximum wave amplitude around the hull are determined via calm water resistance tests in shallow water. These criteria are important in analyzing semi-SWATH resistance in shallow water and its relation to flow around hull. The fore fin angle is fixed to zero degrees, while the aft fin angle is varied to 0°, 5°, 10°, and 15°. For each configuration, investigations are conducted with depth Froude numbers (Fr H ) ranging from 0.65 to 1.2, and the resistance tests are performed in shallow water at the towing tank of UTM. Analysis results indicate that the resistance, wave pattern, and trim of the semi-SWATH hull form are affected by the fin angle. The resistance is amplified whereas the trim and sinkage are reduced as the fin angle increases. Increases in fin angle contribute to seakeeping and stability but affect the hull resistance of HSCs.  相似文献   

14.
In this study, we propose a method for estimating the amount of expansion that occurs in subsea pipelines, which could be applied in the design of robust structures that transport oil and gas from offshore wells. We begin with a literature review and general discussion of existing estimation methods and terminologies with respect to subsea pipelines. Due to the effects of high pressure and high temperature, the production of fluid from offshore wells is typically caused by physical deformation of subsea structures, e.g., expansion and contraction during the transportation process. In severe cases, vertical and lateral buckling occurs, which causes a significant negative impact on structural safety, and which is related to on-bottom stability, free-span, structural collapse, and many other factors. In addition, these factors may affect the production rate with respect to flow assurance, wax, and hydration, to name a few. In this study, we developed a simple and efficient method for generating a reliable pipe expansion design in the early stage, which can lead to savings in both cost and computation time. As such, in this paper, we propose an applicable diagram, which we call the standard dimensionless ratio (SDR) versus virtual anchor length (LA) diagram, that utilizes an efficient procedure for estimating subsea pipeline expansion based on applied reliable scenarios. With this user guideline, offshore pipeline structural designers can reliably determine the amount of subsea pipeline expansion and the obtained results will also be useful for the installation, design, and maintenance of the subsea pipeline.  相似文献   

15.
Coastal areas are under increasing pressure driven by demands for coastal space, primarily though population growth, in migration and the need for space for socioeconomic activities. The pressures and associated changes to the coastal environment need to be managed to ensure long-term sustainability. South Africa has enacted an Integrated Coastal Management Act (ICM Act) to facilitate dedicated management of its coastal environment. The implementation has been met with a number of challenges, primarily relating to financial and human capacity constraints, particularly at the local government level. Given that the ICM Act devolves powers to local government, it is imperative that implementation challenges be addressed. This paper focuses on KwaZulu-Natal, one of four South African coastal regions, which is a renowned tourist destination and home to 11.1 million people (Statistics South Africa 2015 Statistics South Africa. 2015. Mid-Year Population Estimates. Statistical release P0302. Pretoria, South Africa: Statistics South Africa. [Google Scholar]). This paper considers the state of coastal management, as well as implementation challenges being experienced at a local governance level, and highlights ways to address these. Data were acquired through questionnaire surveys and semistructured interviews. The Drivers-Pressures-State-Impact-Response (DPSIR) framework was used to identify relevant ICM issues and concerns and develop potential actions for improving the implementation of coastal management activities and the ICM Act. In the assessment of the ICM governance and implementation to date, a key concern identified was a general lack of coastal management knowledge among officials. It was specifically identified that knowledgeable management and capacity-building required championing from the provincial government in order to more efficiently and effectively implement the objectives of the ICM Act through an improved understanding of the coastal environment, its functioning and management.  相似文献   

16.
A set of experiments is carried out in a towing tank to study the effects of the curvature of perforated plates on the wave reflection coefficient (C r ). The curvature of a perforated plate can be changed by rotating a reference perforated plate aboutits origin according to the parabolic equation y=?x 2. A plunger-type wave maker is used to generate regular waves. The reflection coefficients are calculated using Goda and Suzuki’s (1976) method. The results are compared with those of vertical or sloped passive wave absorbers. The comparison shows that a perforated plate with a curved profile is highly efficient in terms of reducing the wave reflection coefficient. A correlation is established to estimate the reflection coefficient of curved perforated plates as a function of both flow and geometry characteristics.  相似文献   

17.
Navigating in confined waters with a pilot aboard requires that the pilot’s intention and plan is understood by all present on the bridge. The present study investigates the effect of having a detailed route plan and monitoring it in the context of pilotage. The aim was to see how the presence of a shared pilot passage plan in the Electronic Chart Display and Information System (ECDIS) affects the identification and recovery from navigational errors made by a pilot. Twenty participants, 10 with a shared route plan and 10 without, participated as navigators in a simulator scenario involving pilotage in the Oslofjord. Participants were bachelor students in nautical science. The navigation scenarios involved the intentional error by the pilot just before a predefined way point. Three measurements of relevance to navigational safety were recorded: (1) the time it took the participant to express concern, (2) the time it took the participant to correct the error (‘time to recovery’), and (3) the number of groundings. The study revealed that time to express concern and time to recovery were significantly much shorter for the group with a shared pilot passage plan presented in ECDIS than for the group without such a plan. Providing a bridge team with a shared pilot passage plan in ECDIS during pilotage might improve the ability to identify and correct navigational errors.  相似文献   

18.
The solution of water wave scattering problem involving small deformation on a porous bed in a channel, where the upper surface is bounded above by an infinitely extent rigid horizontal surface, is studied here within the framework of linearized water wave theory. In such a situation, there exists only one mode of waves propagating on the porous surface. A simplified perturbation analysis, involving a small parameter ε ( ? 1), which measures the smallness of the deformation, is employed to reduce the governing Boundary Value Problem (BVP) to a simpler BVP for the first-order correction of the potential function. The first-order potential function and, hence, the first-order reflection and transmission coefficients are obtained by the method based on Fourier transform technique as well as Green’s integral theorem with the introduction of appropriate Green’s function. Two special examples of bottom deformation: the exponentially damped deformation and the sinusoidal ripple bed, are considered to validate the results. For the particular example of a patch of sinusoidal ripples, the resonant interaction between the bed and the upper surface of the fluid is attained in the neighborhood of a singularity, when the ripples wavenumbers of the bottom deformation become approximately twice the components of the incident field wavenumber along the positive x-direction. Also, the main advantage of the present study is that the results for the values of reflection and transmission coefficients are found to satisfy the energy-balance relation almost accurately.  相似文献   

19.
20.
Contrary to natural cavitation, ventilated cavitation is controllable and is not harmful. It is particularly used to reduce the drag of the hydraulic vehicles. The ventilated cavitation is characterized by various gas regimes. The mechanisms of ventilated cavitation are investigated in the present work with CFD based on a 2D solver. The attention is especially focused on the transition between the reentrant jet and twin vortex regimes. The results confirm that the product of ventilated cavitation number and Froude number is lower than 1 (σcFr?<?1) in the twin vortex regime, while it is higher than 1 (σcFr?>?1) in the reentrant jet regime, as reported in the literature. Further analysis shows that ventilated cavitation is significantly influenced by the natural cavitation number.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号