首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 252 毫秒
1.
The fatigue behaviour of longitudinal stiffeners of oil tankers and container ships, subjected to dynamic loads, is analysed. The following dynamic load components are considered: hull girder vertical wave bending moment, alone and combined with the horizontal wave bending moment, hydrodynamic pressure and inertial forces caused by cargo acceleration.

The spectral method was selected to calculate the fatigue damage, based on S—N curves and Miner's rule. Following this approach, the fatigue damage may be calculated as a function of a stress parameter Ωp, which represents the cumulative effect of wave induced loads in the unit of time and incorporates the combined effects of stress level and its occurring frequency.

Simple formulas for Ωp of oil tankers and container ships are given, obtained from the results of hydrodynamic analyses performed on several ships, in different wave environments.

Several examples show the applicability of the methods to real ship structures. The method, however, still needs to be calibrated because of the simplifying hypotheses introduced in the loading conditions.  相似文献   


2.
船体梁静水载荷效应统计预报   总被引:2,自引:0,他引:2  
船体梁静水剪力、弯矩等是由装载状态决定的载荷效应。营运船舶装载记录表明,实际装载状态具有不确定性,由此导致载荷效应发生变异,其统计特性可利用回归公式或随机模拟原理进行估算或预报。通过对油船、散货船、滚装船及集装箱船约2000种随机工况所作的统计分析,表明其静水弯矩等随装载偏差的变化近似于正态分布律,并具有比船体中剖面模数或钢材屈服极限更为显著的变异性。在船舶结构可靠性分析或理性设计中,合理估算并预报这种及异性是必要的。  相似文献   

3.
This is the second of two companion papers dealing with nonlinear finite element modelling and ultimate strength analysis of the hull girder of a bulk carrier under Alternate Hold Loading (AHL) condition. The methodology for nonlinear finite element modelling as well as the ultimate strength results from the nonlinear FE analyses was discussed in the companion paper (Part 1). The purpose of the present paper is to use the FE results to contribute towards developing simplified methods applicable to practical design of ship hulls under combined global and local loads. An important issue is the significant double bottom bending in the empty hold in AHL due to combined global hull girder bending moment and local loads. Therefore, the stress distributions in the double bottom area at different load levels i.e. rule load level and ultimate failure load level are presented in detail. The implication of different design pressures obtained by different rules (CSR-BC rules and DNV rules) on the stress distribution is investigated. Both (partially) heavy cargo AHL and fully loaded cargo AHL are considered. Factors of influence of double bottom bending such as initial imperfections, local loads, stress distribution and failure modes on the hull girder strength are discussed. Simplified procedures for determination of the hull girder strength for bulk carriers under AHL conditions are also discussed in light of the FE analyses.  相似文献   

4.
The purpose of this paper is to provide a basis for the development of reliability-based design formats for ultimate hull girder strength checks for bulk carriers in hogging conditions under combined global and local loading and to estimate implied safety levels in current rule practices for hull girders. The effect of alternative definitions of characteristic still-water loads on the safety format and, hence, the safety factors is assessed. The effect of systematic (bias) model uncertainties associated with loads and strength on the reliability measures is investigated.  相似文献   

5.
刘海蛟  张少雄 《船海工程》2013,(6):33-37,41
为准确评估超规范的载重3600t大通舱干货船的弯扭强度及变形水平,采取全船水动力分析及全船有限元直接计算的方法,对各工况下的主要载荷参数进行长期预报,推导出对应等效设计波各参数。根据等效设计波求出各工况全船所受的波浪诱导动载荷,施加到全船有限元模型上,进而对船体弯扭强度及变形水平进行评估。比较了单舱船及货舱中部设一道横舱壁的两舱船,得出单舱船屈曲强度不足的结论,并提出改善屈曲强度的方案。  相似文献   

6.
《Marine Structures》2004,17(5):355-384
Container ship structures are characterized by large hatch openings. Due to this structural property, they are subject to large diagonal deformations of hatch openings and warping stresses under complex torsional moments in waves. This necessitates torsional strength assessment of hull girder of container ships in their structural design stage. In this paper, a practical method for torsional strength assessment of container ship structures with transparent and consistent background is discussed based on the results from up-to-date analyses. In order to estimate the torsional response characteristics as accurately as possible, three-dimensional Rankine source method, after being validated by tank tests, is employed for estimation of wave loads on a container ship, and FE analyses are conducted on the entire-ship model under the estimated loads. Then, a dominant regular wave condition under which the torsional response of the container ship becomes maximum is specified. Design loads for torsional strength assessment that give torsional response equivalent to the long-term predicted values of torsional response are investigated based on the torsional moments on several container ships under the specified dominant wave condition. An appropriate combination of stress components to estimate the total hull girder stress is also discussed.  相似文献   

7.
由于作业方式不同,用于计算FPSO与不限定航线条件下船舶设计载荷的规范计算公式不一样,如何将现有的关于普通海船的规范用于FPSO的设计评估是FPSO研究中的关键问题.基于现有常规钢质海船规范,文章采用环境烈度因子(ESF)对用于计算运营于无限航区船舶设计载荷的规范公式进行修正,将修正后的公式作为FPSO设计载荷的计算公式.利用所得FPSO载荷计算公式计算某30万吨FPSO设计载荷,并采用薄壁梁理论对船体梁强度进行校核.将校核结果与未经ESF修正的船体梁校核结果进行比较,发现未经ESF修正的船体梁校核结果明显偏大.同时,采用薄壁梁理论进行船体梁剪切强度评估,可以避免建立全船有限元模型.  相似文献   

8.
对于船舶结构设计中经常碰到的上层建筑参与船体总纵弯曲程度这个问题,即上层建筑有效度问题进行研究。有效度的正确计算判断不仅有助于上层建筑结构的合理布局,而且能避免各种裂纹的出现,提高船舶的使用寿命。现代工程设计常采用不同的近似计算方法来评估有效度,而这些近似计算方法的精确度及适用范围则需要通过试验来加以验证,以便给工程设计提供一定的指导。  相似文献   

9.
刘日明 《船舶》2015,(Z1):10-16
对CSR-H 与CSR用于强度分析的载荷变化进行分析,对各载荷分量的包络值以及应用于等效设计波中的船体梁波浪弯矩、波浪剪力和外部海水压力、加速度等载荷分量的大小进行比较。分析货油舱、干散货舱、压载舱典型位置处的内部压力变化,并对载荷变化可能引起的结构要求变化进行分析和概括。  相似文献   

10.
11.
徐贺  王璞  杨玥 《船舶》2015,(1):15-19
为研究液舱内液货自由面水动力效应对船体波浪载荷及船体运动的影响,基于一艘15万吨FPSO,选取液货舱原始布置形式下两种典型装载工况以及一组具有不同长度中部半载液舱的FPSO液舱分布模型,分别采用准静态方法和全动态方法对船体波浪载荷及运动进行计算。结果表明,使用准静态方法进行波浪载荷预报具有工程可靠性,中部半载液舱长度对船体波浪载荷及运动有一定影响。  相似文献   

12.
13.
Time-variant reliability analysis of a corroded bulk carrier in intact and damage conditions is performed by First-Order (FORM), Second-Order (SORM) Reliability Methods and Importance Sampling simulation. Annual failure probabilities are determined up to 25-year ship lifetime, accounting for time-variant corrosion wastage of structural members contributing to hull girder strength. Statistical properties of hull girder capacity are determined by Monte Carlo simulation, applying three correlation models among corrosion wastages of structural members contributing to hull girder strength, namely no correlation, full correlation and full correlation among wastages of structural members belonging to the same category of compartments. A modified incremental-iterative method is applied, to account for instantaneous neutral axis rotation, in case of asymmetrical damage conditions, as for collision and grounding events. Incidence of intact/damage condition, as well as correlation among corrosion wastages, on annual sagging/hogging time-variant failure probability is investigated and discussed. Time-variant sensitivity analyses for intact and damage conditions are also performed, to investigate the incidence of random variables' uncertainties on the attained failure probability. Finally, the bulk carrier section scheme, benchmarked in the last ISSC Report, is applied as test case.  相似文献   

14.
双壳型船体结构稳态温度场和温度应力   总被引:9,自引:0,他引:9  
用简化解析方法和有限元数值方法,分析了双壳型船体货舱区域在运载高温液货时的稳态温度场;根据船体结构的温度分布,用有限元法计算了其温度应力,同时与货物压力、海水静动压力、总纵弯矩等载荷作用下的结构应力做了比较。研究结果表明:在货舱结构温度场分析中用简化分析方法和有限元数值方法所得的计算结果相当一致;高温液货大幅度增加船体结构的纵向应力和横向应力,同时加剧结构不连续处的应力集中;槽型舱壁可以有效地释放  相似文献   

15.
Dynamics of ships running aground   总被引:3,自引:0,他引:3  
A comprehensive dynamic model is presented for analysis of the transient loads and responses of the hull girder of ships running aground on relatively plane sand, gravel, or rock sea bottoms. Depending on the seabed soil characteristics and the geometry of the ship bow, the bow will plow into the seabed to some extent. The soil forces are determined by a mathematical model based on a theory for frictional soils in rupture and dynamic equilibrium of the fluid phase in the saturated soil. The hydrodynamic pressure forces acting on the decelerated ship hull are determined by taking into account the effect of shallow water. Hydrodynamic memory effects on the transient hull motions are modeled by application of an impulse response technique. The ship hull is modeled as an elastic beam to determine the structural response in the form of flexural and longitudinal stress waves caused by the transient ground reaction and hydrodynamic forces. A number of numerical analysis results are presented for a VLCC running aground. The results include bow trajectory in the seabed, time variation of the grounding force, and the maximum values of the sectional shear forces and bending moments in the hull girder.  相似文献   

16.
During ship collisions part of the kinetic energy of the involved vessels immediately prior to contact is absorbed as energy dissipated by crushing of the hull structures, by friction and by elastic energy. The purpose of this report is to present an estimate of the elastic energy that can be stored in elastic hull vibrations during a ship collision.When a ship side is strengthened in order to improve the crashworthiness it has been argued in the scientific literature that a non-trivial part of the energy released for structural deformation during the collision can be absorbed as elastic energy in global ship hull vibrations, such that with strong ship sides less energy has to be spent in crushing of the striking ship bow and/or the struck ship side.In normal ship–ship collision analyses both the striking and struck ship are usually considered as rigid bodies where structural crushing is confined to the impact location and where local and global bending vibration modes are neglected. That is, the structural deformation problem is considered quasi-static. In this paper a simple uniform free–free beam model is presented for estimating the energy transported into the global bending vibrations of the struck ship hull during ship–ship collisions. The striking ship is still considered as a rigid body. The local interaction between the two ships is modeled by a linear load–deflection relation.The analysis results for a simplified model of a struck coaster and of a large tanker show that the elastic energy absorbed by the struck ship normally is small and varies from 1 to 6% of the energy released for crushing. The energy stored as elastic global hull girder vibrations depends on the ship mass, the local stiffness of the side structure, and of the position of contact. The results also show that in case of highly strengthened ship sides the maximum global bending strains during collisions can lead to hull failure.  相似文献   

17.
破损散货船剩余极限强度的评估与分析   总被引:1,自引:0,他引:1  
船体发生破损后.其剩余有效剖面是非对称的,船体还可能倾斜.根据IACS共同规范(CSR),采用逐步破坏分析法计算船体梁在不同破损情况下的剩余极限强度,同时编制了计算程序.对1艘散货船在完整和不同破损状态下的船体结构安全性进行了系统评估,并得到了一些有意义的结论.  相似文献   

18.
罗薇  王德恂 《船舶工程》2007,29(5):27-29
针对两艘机动驳船,其一为赤水河现有优秀船,隧道尾型称为对比船,其二为武汉理工大学开发研制的双尾新船型,称为设计船,进行了不同水深、不同装载工况的浅水阻力性能、推进性能试验研究.探讨了不同船型、水深变化和装载工况变化对船舶浅水快速性能影响,给出了一些有益的结论.  相似文献   

19.
《Marine Structures》2002,15(2):119-138
This paper presents an investigation of the longitudinal strength of ships with damages due to grounding or collision accidents. Analytical equations are derived for the residual hull girder strength and verified with direct calculations of sample commercial ships for a broad spectrum of accidents. Hull girder ultimate strengths of these sample vessels under sagging and hogging conditions are also calculated, based on which correlation equations are proposed. To evaluate a grounded ship, using the section modulus to the deck would be optimistic, while using the section modulus to the bottom would be conservative. On the contrary, to evaluate a collided ship, using the section modulus to the deck would be conservative, while using the section modulus to the bottom would be optimistic. The derived analytical formulae are then applied to a fleet of 67 commercial ships, including 21 double hull tankers, 18 bulk carriers, 22 single hull tankers and six container carriers. The mean values, standard deviations and coefficients of variation for the coefficients in these new analytical formulae are obtained. The ship length exhibits little influence on these coefficients because they are close to the mean values although ship length spans from 150 to 400 m. The ship type shows some influence on the residual strength. Uniform equations are proposed for commercial ships which do not depend on a ship's principal dimensions. These formulae provide very handy tools for predicting the residual strength in seconds, without performing step-by-step detailed calculations, an obvious advantage in cases of emergency or salvage operation.  相似文献   

20.
大型舰船总纵强度计算方法研究   总被引:1,自引:0,他引:1  
由于现有国内水面舰船设计规范仅适用于船长160m以下的舰船,为了更好地研究大型舰船的总纵强度,本文对一船长约200m的目标舰按照<中国船级社钢质海船入级与建造规范>(CCS)与基于<舰船通用规范>(GJB)基础上的建议标准以及全船有限元直接计算这三种方法作了计算与比较,得出了一些有益的结论,对大型舰船的总纵强度研究与规范的制定提供了较好的参考.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号