首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
文章针对船舶结构设计时重点关注的艏部砰击载荷问题,综合考虑计算效率及精度,提出了基于势流理论和计算流体力学方法的混合两步法。第一步,采用三维势流理论预报波浪中有航速船舶的运动响应,分析船波相对运动;第二步,根据预报砰击载荷所在位置的船体横剖面,建立等截面的三维立体模型,采用基于有限体积法与动网格技术的计算流体力学方法,基于第一步得到的相对运动结果模拟落体入水过程,计算砰击压力。使用该两步法预报了某超大型油轮在压载工况顶浪航行时候的艏部砰击压力,并讨论了相对运动和砰击压力的时域历程规律。文中数值预报结果得到了水池模型实验的验证,表明该方法的可行性和预报结果的合理性。  相似文献   

2.
A common approach to investigate the response of a structural detail such as a hatch corner is to compute the seakeeping loads using a linear 3D Boundary Element Method (BEM) and transfer the seakeeping loads to a Finite Element (FE) model of the ship structure. This approach is suitable for computations of the fatigue loading of structural details near amidships because a majority of the fatigue loading will occur in mild sea-states where the loading may be assumed linear. However, the linear seakeeping model may not hold when one investigates the ultimate response of the local bow structure of a ship which is designed to remain operational in severe conditions, for example, a frigate. A linear seakeeping analysis will significantly underpredict the loading at the bow because both the impulsive slamming loads and the non-linearities in the non-impulsive wave loads will contribute significant to the structural loading.The non-linear loads require one to first derive a short-term distribution of the local structural response before the ultimate value of the response can be derived. A method to compute the short-term distribution of a structural detail is presented in this paper. The first step is to perform seakeeping analyses which includes slamming, non-linear Froude-Kryloff and hydrostatic loads. The short-term distribution of the total hydrodynamic loading at the structural detail is obtained by simulating the seakeeping response for several hours. The response of the local structure is computed for the most severe impacts found in the seakeeping simulation. The hydrodynamic loading, including the non-linear contributions, is transfer to the structural model and the structural response is computed using the FE-method. The results of the structural analyses allow one to transform the short-term distribution of the structural loading to a short-term distribution of the response of the structural detail. A designer can obtain the ultimate structural response by entering the probability at which one accepts overloading of the structure in the short-term distribution of the response of the structural detail.  相似文献   

3.
准确预报船体运动响应对于砰击等波浪载荷的计算以及合理结构设计具有重要意义。船舶在大幅波浪中的运动呈明显的非线性,而现阶段耐波性预报多采用线性切片方法。三维水动力分析软件 WASIM基于时域势流理论,采用 Rankine面元法预报船舶在波浪中的运动响应,并考虑了多种非线性因素。本文以标模 DTMB5512为对象,采用 WASIM预报其在不同航速下的耐波性,并与基于线性切片理论的计算结果和模型试验结果进行对比。结果表明:利用 WASIM计算得到的船体运动响应比其他方法更接近试验值,合理体现了船舶在风浪中的实际耐波性能。因此,利用 WASIM能够较好地评估船舶在波浪中的非线性耐波特性。  相似文献   

4.
Since the research of flare slamming prediction is seldom when parametric rolling happens, we present an efficient approximation method for flare slamming analysis of large container ships in parametric rolling conditions. We adopt a 6-DOF weakly nonlinear time domain model to predict the ship motions of parametric rolling conditions. Unlike previous flare slamming analysis, our proposed method takes roll motion into account to calculate the impact angle and relative vertical velocity between ship sections on the bow flare and wave surface. We use the Wagner model to analyze the slamming impact forces and the slamming occurrence probability. Through numerical simulations, we investigate the maximum flare slamming pressures of a container ship for different speeds and wave conditions. To further clarify the mechanism of flare slamming phenomena in parametric rolling conditions, we also conduct real-time simulations to determine the relationship between slamming pressure and 3-DOF motions, namely roll, pitch, and heave.  相似文献   

5.
砰击载荷作用下船艏结构瞬态响应研究   总被引:6,自引:0,他引:6  
砰击现象对高速舰船艏部局部结构破坏相当严重,对舰船和人员的安全构成较大威胁,然而由于砰击载荷的瞬态性和强非线性,其计算理论还很不成熟,舰船艏部结构在砰击作用下的应力响应更鲜有人研究。基于此,利用设计波下确定的砰击压力极值,结合以往试验测定的砰击压力随时间的变化关系,计算得到砰击压力的时空分布,然后将其施加在船艏精细有限元模型上,利用中心差分法进行数值计算,并对计算中一些关键参数的设置值做不同尝试,得到了较理想的艏部结构应力响应历程。  相似文献   

6.
A method for the prediction of slamming loads on ship hulls is presented and validated for a 20-knot, 120-m car carrier. A nonlinear strip theory is used to calculate the relative motions of ship and wave. The relative vertical and roll velocities for a slamming event are given as input to the slamming calculation program, which is based on a generalized two-dimensional Wagner formulation and solved by the boundary element method. The method is fast and robust. Model tests of a car carrier have been carried out in regular head, bow, and bow quartering waves of various heights. Slamming on two panels in the upper part of the bow flare has been studied. It has been found that the water pile-up around the bow due to the forward speed of the vessel significantly increases the slamming pressures. A simplified way of including this effect is presented. When the calculated slamming pressures are corrected for 3D effects, they compare well with the measured data. Since the effect of the wave elevation due to the forward speed and the effect of three-dimensional flow act in opposite directions, excluding both of them produced results that also agreed quite well with the experiments, especially for the most severe slamming events.  相似文献   

7.
The paper presents an overview of studies of slamming on ship structures. This work focuses on the hull slamming, which is one of the most important types of slamming problems to be considered in the ship design process and the assessment of the ship safety. There are three main research aspects related to the hull slamming phenomenon, a) where and how often a slamming event occurs, b) slamming load prediction and c) structural response due to slamming loads. The approaches used in each aspect are reviewed and commented, together with the presentation of some typical results. The methodology, which combines the seakeeping analysis and slamming load prediction, is discussed for the global analysis of the hull slamming of a ship in waves. Some physical phenomena during the slamming event are discussed also. Recommendations for the future research and developments are made.  相似文献   

8.
采用离差最大化方法对船舶耐波性进行综合评价,引入加权向量和规范化决策矩阵,以及各评价指标的权重和规范化矩阵对耐波性评价的影响,建立了基于横摇、纵摇、垂荡、砰击、甲板上浪、螺旋桨出水和船首垂向加速度的船舶耐波性综合评价体系,并系统阐述了该方法的基本原理和实施步骤.以30组样本数据为输入,对某油船在不同航行状态下的耐波性能开展了评价分析.与耐波性方程评估法相比,该方法理论完备、涵义明确、结果可靠,在船舶耐波性综合评价中具有一定的推广和实用价值.  相似文献   

9.
不同海况下艏部砰击及鞭状效应的试验与数值分析   总被引:1,自引:0,他引:1  
为了更深入地研究船舶的鞭状效应,在拖曳水池中对某船进行了艏部砰击及鞭状效应分段模型试验研究。提出了一种可以考虑砰击力的非线性水弹性计算方法。并改进了传统的分段模型,采用变截面梁对船体刚度进行模拟以更好地接近实船。在规则波迎浪下观察到了严重的艏部砰击现象。试验数据表明,当波高从5.6m增大到21m时,由于鞭状效应原因,总弯矩相比低频波浪弯矩的增大值从24.64%增长到92.02%。最后,将不同海况下的测量结果与基于线性与非线性水弹性理论的计算结果进行了比较分析,初步验证了文中方法和程序在预报船体波浪载荷中的适用性。  相似文献   

10.
砰击载荷作用下船首结构的规范设计对比研究   总被引:1,自引:0,他引:1  
陈永兵  迟诚  田喜民  朱青淳 《船舶》2015,(5):128-134
针对某船首部结构,选用不同的规范进行砰击载荷作用下的首部结构尺寸规范计算,通过比较计算结果,分析规范之间的差异,从而为舰船首部结构的设计提供参考。  相似文献   

11.
陆明锋  杨源 《船舶工程》2019,41(3):31-36
超大型集装箱船的船艏显著外飘、船艉宽平外悬,使其在恶劣海况下航行时容易发生严重的砰击。为确保船体艏艉部结构在砰击中不发生损坏,需要研究作用到艏艉外板上的砰击压力,并以此为设计载荷来校核外板和相连结构的强度。目前对集装箱船砰击局部强度的校核要求仍以经验公式为主,但是为提高对超大尺度船舶强度校核的可靠性,近年来推出了砰击的直接分析方法。本文初步分析了砰击直接分析方法的基本原理,并运用该方法对20,000 TEU集装箱船的艏、艉部砰击压力以及最小板厚要求进行了研讨,其结果可为超大型集装箱船的结构设计提供重要的参考。  相似文献   

12.
该文采用直接计算法研究一艘大型集装箱船迎浪航行时的外飘砰击压力特点。先基于三维势流理论Rankine面元法,应用DNV船级社的商业软件Wasim计算出该船在压载时不同海况下以不同航速航行时在非规则波中时域内的非线性运动响应时历,再根据Wagner型冲击理论计算得到该集装箱船艏外飘区域的外飘砰击压力。最后,依据概率随机理论,得到不同工况下的外飘砰击概率以及外飘砰击压力极值,并分析概率和极值特点。  相似文献   

13.
Dynamics of ships running aground   总被引:3,自引:0,他引:3  
A comprehensive dynamic model is presented for analysis of the transient loads and responses of the hull girder of ships running aground on relatively plane sand, gravel, or rock sea bottoms. Depending on the seabed soil characteristics and the geometry of the ship bow, the bow will plow into the seabed to some extent. The soil forces are determined by a mathematical model based on a theory for frictional soils in rupture and dynamic equilibrium of the fluid phase in the saturated soil. The hydrodynamic pressure forces acting on the decelerated ship hull are determined by taking into account the effect of shallow water. Hydrodynamic memory effects on the transient hull motions are modeled by application of an impulse response technique. The ship hull is modeled as an elastic beam to determine the structural response in the form of flexural and longitudinal stress waves caused by the transient ground reaction and hydrodynamic forces. A number of numerical analysis results are presented for a VLCC running aground. The results include bow trajectory in the seabed, time variation of the grounding force, and the maximum values of the sectional shear forces and bending moments in the hull girder.  相似文献   

14.
《Marine Structures》2002,15(3):285-307
This paper addresses the structural response of clam-type bow doors of Ro/Ro vessels under slamming loading conditions. The structural analysis is performed with the finite element code MSC/NASTRAN. The loading conditions were determined on the basis of towing tank tests, numerical calculation and regulations of classification societies. Slamming loads are applied statically and the FE code accounts for both material and geometrical nonlinearities. Apart from stress distributions, which are determined for different loading patterns, the results are used to calculate the forces and moments induced on the locking and securing elements, which secure the doors among themselves and the doors to the bow structure. The modelling methods reported may be used for the finite element analysis of similar structures. Such analyses of bow doors response under slamming loading could be submitted to classification societies for approval.  相似文献   

15.
水面舰船迎浪航行时大幅运动预报的切片算法   总被引:4,自引:0,他引:4  
将预报船舶运动和波浪载荷的切片理论加以扩展,应用于有限深水中船舶迎浪航行时大幅纵向运动和波浪载荷的时域求解。预报结果体现出考虑了湿表面及化后引起的船舶运动和受力的非线性性质。本计算方法简便、实用,适用于船舶纵向大幅运动预报。  相似文献   

16.
In this paper, we present the results of our numerical seakeeping analyses of a 6750-TEU containership, which were subjected to the benchmark test of the 2 nd ITTC–ISSC Joint Workshop held in 2014. We performed the seakeeping analyses using three different methods based on a 3D Rankine panel method, including 1) a rigid-body solver, 2) a flexible-body solver using a beam model, and 3) a flexible-body solver using the eigenvectors of a 3D Finite Element Model(FEM). The flexible-body solvers adopt a fully coupled approach between the fluid and structure. We consider the nonlinear Froude–Krylov and restoring forces using a weakly nonlinear approach. In addition, we calculate the slamming loads on the bow flare and stern using a 2D generalized Wagner model. We compare the numerical and experimental results in terms of the linear response, the time series of the nonlinear response, and the longitudinal distribution of the sagging and hogging moments. The flexible-body solvers show good agreement with the experimental model with respect to both the linear and nonlinear results, including the high-frequency oscillations due to springing and whipping vibrations. The rigid-body solver gives similar results except for the springing and whipping.  相似文献   

17.
一种有效近似建模方法及船舶耐波性代理模型构建   总被引:1,自引:0,他引:1  
船舶耐波性能预报计算过程复杂,会受到诸多设计变量的影响;且采用高精度商业软件如CFD预报船舶性能的计算代价非常高。文章采用拉丁超立方方法进行了设计空间抽样。定义了一个新的综合衡准指标来表达船舶耐波性能,即短期和长期作用下船舶非工作时间百分数。考虑了船舶耐波性能中的五个运动方向:横摇、纵摇、转艏、横荡和升沉。为提高船舶耐波性能计算效率,一种有效的近似建模方法—单参数Lagrangian 支持向量回归算法被用于训练并构建代理模型以预报船舶耐波性能,且该算法是由作者在过去的研究工作中首次提出。以海洋平台支援船(OSV)为例,采用SPL-SVR算法预报船舶耐波性能,并与基于NAPA计算仿真结果、人工神经网络和经典支持向量回归算法进行对比。该文考虑OSV的两种速度,建立了海洋平台支援船短期作用下非工作时间百分数的耐波性能响应面模型,结果显示采用SPL-SVR算法建立的船舶耐波性能响应面模型比较适合船型初步设计的工程实际应用,并具有较高的计算效率。  相似文献   

18.
客滚船的特殊线型——艏部外飘幅度较大和艉部的扁平肥大型结构,在营运过程中易受到砰击载荷的作用。由于该类船舶砰击问题显著,故一直是业内研究的热点。以某客滚船为例,针对其艏艉结构进行砰击计算,采用计算量适中,且可实现砰击载荷预报的频域法,将砰击载荷映射到相应各部分的有限元计算模型上,经计算分析,得到艏艉结构在砰击压力下的应力结果,最终实现对客滚船砰击强度的安全评估。整个计算探讨过程,可供同类船舶的设计研究人员借鉴。  相似文献   

19.
张文挺  王建辉 《船舶工程》2016,38(10):58-62
船舶在航行时发生砰击是一种高度非线性的物理现象。本文基于势流理论Rankine源法,研究用时域非线性方法计算船舶运动响应,获得船波垂向相对运动速度;并选取合适的砰击压力系数,计算船舶砰击载荷。最后用该方法评估了一艘集装箱船艏部砰击强度,验证了该方法的合理性。  相似文献   

20.
An efficient method for calculation of the slamming pressures on ship hulls in irregular waves is presented and validated for a 290-m cruise ship. Nonlinear strip theory was used to calculate the ship–wave relative motions. The relative vertical and roll velocities for a slamming event were input to the slamming calculation program, which used a two-dimensional boundary element method (BEM) based on the generalized 2D Wagner formulation presented by Zhao et al. To improve the calculation efficiency, the method was divided into two separate steps. In the first step, the velocity potentials were calculated for unit relative velocities between the section and the water. In the next step, these precalculated velocity potentials were used together with the real relative velocities experienced in a seaway to calculate the slamming pressure and total slamming force on the section. This saved considerable computer time for slamming calculations in irregular waves, without significant loss of accuracy. The calculated slamming pressures on the bow flare of the cruise ship agreed quite well with the measured values, at least for time windows in which the calculated and experimental ship motions agreed well. A simplified method for calculation of the instantaneous peak pressure on each ship section in irregular waves is also presented. The method was used to identify slamming events to be analyzed with the more refined 2D BEM method, but comparisons with measured values indicate that the method may also be used for a quick quantitative assessment of the maximum slamming pressures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号