首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
为解决钢混结合段区域U形加劲肋传力不流畅,受力以及施工复杂等问题,提出一种新型的带板肋的超高性能混凝土(UHPC)轻型组合桥面板,通过有限元分析将其抗疲劳性能与带U肋超高性能组合桥面板进行对比分析研究,并进一步对该结构在负弯矩作用下的承载能力,UHPC层的开裂应力,破坏模式以及荷载挠度关系进行实桥足尺模型试验研究。结果表明:(1)板肋组合桥面结构在疲劳性能上有更大优势,其在疲劳细节2,3,4上的应力幅均大大低于U肋组合结构;(2)足尺模型试验得到板肋轻型组合桥面结构的开裂应力为20.1 MPa略低于U肋轻型组合结构23.6 MPa;(3)板肋组合结构的破坏模式均为加劲肋屈服导致结构丧失承载能力而发生破坏,而U肋组合结构的破坏模式为横隔板屈曲失稳破坏于工程应用不利;  相似文献   

2.
针对柔性铺装正交异性钢桥面板存在的钢板疲劳开裂和铺装层极易损坏的问题,提出超高性能混凝土(UHPC)-钢正交异性板组合桥面体系。以武汉军山长江大桥为背景,通过ANSYS有限元仿真计算分析该组合桥面体系正交异性板相对于柔性铺装正交异性板受力性能的改善情况,并通过单U肋2跨连续梁足尺模型试验对UHPC层的受力性能进行研究。研究结果表明:采用组合桥面后正交异性板各构造细节的应力大幅下降,其中面板应力降幅最大,加劲肋次之,横隔板最小;采用UHPC-钢正交异性板组合桥面体系后正交异性板主要构造细节最不利热点应力幅降至常幅疲劳极限以下,理论上具有无限疲劳寿命;模型试验显示在实桥最不利应力作用下,UHPC层未发现可见裂纹,当名义应力达到18.79 MPa时在模型中支撑板顶部UHPC上发现0.05mm宽的裂纹。  相似文献   

3.
该文提出了一种新型的带板肋的超高性能混凝土轻型组合结构,通过有限元建模的方法分析了其应用于浙江五一大桥时的抗疲劳性能并与原U肋加劲的钢桥面板进行对比分析。针对该结构在负弯矩作用下UHPC的抗弯拉疲劳性能以及组合结构层间栓钉抗剪疲劳性能开展了足尺模型疲劳性能试验。结果表明:(1)带板肋的组合桥面结构完全解决了传统钢桥面中部分细节疲劳抗性不足的问题;(2)负弯矩疲劳试验得到板肋轻型组合桥面中UHPC层在10MPa弯拉应力幅的作用下经过500万次疲劳荷载作用后裂缝宽度仅为0.09mm,对结构整体性能无明显影响;(3)板肋组合结构中栓钉连接件在90 MPa疲劳应力幅作用下经过50万次循环荷载作用后,未见任何破坏迹象及层间滑移裂缝,换算得到实桥中栓钉抗剪疲劳寿命不小于76 293万次;(4)板肋组合结构中加劲肋在193MPa疲劳应力幅作用下经过50万次循环荷载作用后发生断裂破坏,换算得到实桥中加劲肋疲劳寿命为5 616万次。  相似文献   

4.
以某钢-混凝土工字组合梁桥为工程背景,通过ANSYS有限元软件建立全桥数值模型,研究了该结构体系在二期铺装荷载和汽车荷载作用下的受力性能。研究表明:混凝土桥面板在支座位置处因受到负弯矩作用而产生较大的主拉应力;二期铺装荷载作用下混凝土桥面板横向应力对主拉应力的贡献较小,而汽车荷载作用下的桥面板横向应力不容忽略;两种工况下工字钢主梁的等效应力普遍较低,具备较高的安全储备;除局部产生应力集中外,桁架式横梁、加筋肋等构造构件的应力水平较低,有待于进一步的优化设计研究。  相似文献   

5.
预应力混凝土槽形梁桥的主梁连接板在运营过程中易产生开裂病害,为修复桥面板的裂缝,改善桥梁受力,提出超高性能混凝土(UHPC)薄层加固法(在桥面板底部浇筑1层UHPC,与原结构整体受力),以沪嘉高速公路蕰藻浜大桥加固项目为背景,论述该方法在该桥加固中的应用。为检验加固效果,采用ANSYS建立甲式桥面板(槽形主梁连接板)的局部有限元模型进行应力分析,并通过荷载试验分析甲式桥面板加固前、后的受力及变形。通过理论和试验分析可知:加固后,在车辆荷载作用下,甲式桥面板的横向应力降至0.5 MPa以下,UHPC层拉应力为2.5MPa;甲式桥面板的横向应变降低了约65%,竖向挠度降低了约60%;UHPC层的应力实测值与有限元理论值基本一致。说明UHPC薄层加固法可有效改善桥面板受力,提高桥面板的刚度,减小桥面板的挠度。  相似文献   

6.
为了解新型大纵肋钢-超高性能混凝土(UHPC)正交异性组合桥面板对传统正交异性钢桥面板的受力性能的改善效果,以港珠澳大桥深水区非通航孔6×110m连续钢箱梁桥为背景,建立全桥有限元模型,对2种桥面方案的静力性能进行对比,建立节段有限元模型,对比2种桥面方案U肋与顶板连接焊缝处的疲劳性能,并分析U肋开口宽度和UHPC结构层厚度对大纵肋钢-UHPC正交异性组合桥面板疲劳性能的影响。结果表明:2种桥面方案下钢箱梁控制点的位移和应力相差不大,所提出的大纵肋钢-UHPC正交异性组合桥面板在中等跨度连续梁桥中具有较好的适用性;大纵肋钢-UHPC正交异性组合桥面板的疲劳性能显著优于传统正交异性钢桥面板;增大U肋开口宽度会导致U肋与顶板连接焊缝应力幅增加,增加UHPC结构层厚度能显著降低U肋与顶板连接焊缝应力幅。  相似文献   

7.
提出了钢—UHPC轻型组合桥梁结构,以克服传统钢-混凝土组合结构桥梁混凝土桥面板的不足。(1)从基本力学性能和经济性方面对轻型组合梁和传统组合梁进行对比,表明轻型组合梁具有自重低,力学性能优越,施工方便快捷,全寿命经济效益显著等特征,具有较好的应用前景。(2)对等厚板、带纵肋桥面板、华夫桥面板3种结构型式的UHPC桥面板进行有限元分析,结果表明:华夫桥面板竖向位移最小,整体刚度最大;带纵(横)肋桥面板仅纵肋下缘纵向拉应力最大,只需在纵肋下缘配置纵向受拉钢筋;华夫桥面板方案横向拉应力峰值小于较带纵肋方案。(3)基于华夫桥面板方案开展了足尺条带模型试验,正负弯矩试验的初裂应力分别为19.4 MPa和9.1 MPa,华夫桥面板方案能够满足正常使用极限状态的裂缝限值。  相似文献   

8.
钢桥面铺装力学特性试验研究   总被引:2,自引:0,他引:2  
通过对钢桥面铺装模型结构进行静载试验和有限元分析,研究了钢桥面板及沥青混凝土铺装层在车轮荷载下的局部变形和应力、应变特性。结果表明,在常温或低温状态下,沥青混凝土铺装层对钢桥面板不仅起分散荷载的作用,而且与钢桥面板形成一组合断面,成为钢板面板结构的一部分,相当于增加了桥面钢板的厚度。对于钢桥面沥青混凝土铺装表面产生裂缝的问题,不仅与正交异性钢桥面板的结构形式有关,而且与沥青混凝土铺装的结构形式、铺装的厚度和刚度以及铺装与桥面钢板的粘接状况有着密切的关系。  相似文献   

9.
对钢桥面板整体模型进行了有限元分析。结果表明,顶板横向应力在横桥向的分布表现出类似弹性支承多跨连续梁的受力特点,且顶板横向应力基本全部为弯曲应力,膜应力很小,在顶板-纵肋连接处纵肋应力远小于顶板横向应力。顶板-纵肋连接处的应力纵向和横向影响线很短,疲劳验算可不考虑同一车辆轴重间的相互影响及多车效应。增加顶板厚度可大大降低顶板的应力幅,铺装层的完整性对钢桥面板十分重要。此外,还对该类型接头的疲劳分级及现行欧洲规范Eurocode和美国规范AASHTO LRFD的相关条款进行了分析。为考虑车辆荷载通过引起的非成比例多轴疲劳效应,轮荷载滚动加载足尺模型试验和分析方法需要进一步深入研究。  相似文献   

10.
针对正交异性钢桥面板顶板-U肋焊缝疲劳开裂问题,提出一种在钢桥面顶面粘贴小尺寸矩形板的疲劳加固方法.以某主跨1490 m的悬索桥为背景,建立正交异性钢桥面局部有限元模型,计算加固前、后钢桥面板顶板-U肋焊缝在车轮横向荷载与纵向移动荷载下的应力情况;分析加固板厚度、横桥向尺寸、顺桥向尺寸和材料属性等参数对加固效果的影响规...  相似文献   

11.
在大纵肋正交异性钢桥面板结构中引入混凝土结构层,通过栓钉将钢桥面板与混凝土结构层组成新型大纵肋正交异性组合桥面板,是从结构体系层面提高大纵肋正交异性钢桥面板疲劳性能的有效途径。基于有限元数值分析,明确了大纵肋正交异性组合桥面体系对于钢桥面板典型疲劳易损细节的应力幅改善效果;采用足尺节段模型试验对结构的关键疲劳易损细节进行了疲劳试验研究,验证了关键疲劳易损细节在设计寿命期内的抗疲劳安全性和混凝土结构层在疲劳荷载作用下的耐久性,在此基础上对关键疲劳易损细节的疲劳损伤演化及结构体系的疲劳破坏模式进行了试验与理论研究。研究结果表明:大纵肋正交异性组合桥面板结构体系能够显著降低U肋与顶板以及U肋与横隔板连接细节的应力幅,横隔板开孔部位是控制钢桥面板疲劳性能的关键构造细节;设计寿命期内钢桥面板疲劳性能与混凝土结构层的疲劳耐久性均满足要求,且具有一定的安全储备;混凝土结构层负弯矩区疲劳开裂对钢桥面板各疲劳易损细节疲劳性能的影响不显著;大纵肋正交异性组合桥面板的疲劳破坏模式表现出典型的两阶段特征,栓钉发生疲劳断裂并导致组合效应局部劣化,进而加速钢桥面板关键疲劳易损细节的疲劳损伤累积速度并最终发生疲劳开裂。  相似文献   

12.
为评估钢-超高性能混凝土(UHPC)组合桥面体系(通过剪力钉将配筋UHPC薄层与正交异性钢桥面板组合而成的新型桥面结构)的实桥应用效果,以太原摄乐大桥为背景,分别建立80 mm厚SMA铺装层、60 mm厚UHPC+80 mm厚SMA铺装层2种铺装方案有限元模型进行静力性能分析,并对桥面行车道开展静、动载试验研究。结果表明:设置UHPC铺装层能显著提高结构刚度,大幅降低正交异性钢桥面板各构造细节应力;实桥静载测试数据与计算值吻合度较高;当车辆以60 km/h设计速度行驶时,钢-UHPC组合桥面无明显动力冲击效应;钢-UHPC组合桥面体系在实桥上应用效果良好。  相似文献   

13.
正交异性钢板-薄层RPC组合桥面基本性能研究   总被引:6,自引:1,他引:5  
为了解决正交异性钢桥面铺装层破损及钢桥面结构疲劳开裂2类病害问题,提出了一种新型正交异性钢板-薄层超高性能活性粉末混凝土(RPC)组合桥面结构体系。基于某大桥建立有限元模型,并对比计算了纯钢梁和组合桥面结构中桥梁主缆索力和桥面系应力状态;同时,开展了足尺条带模型静载试验。研究结果表明:采用新型钢-RPC组合桥面结构后,钢面板及纵肋中应力明显降低且最大降幅超过70%,而主缆索力几乎不增加;RPC层开裂前的拉应力可达42.7MPa,远高于其在实桥荷载作用下10.08MPa的拉应力;该新型钢-RPC组合桥面结构可提高桥面系的刚度,降低钢桥面结构中的应力,从而能够基本消除钢桥面疲劳开裂的风险。  相似文献   

14.
为改善当前大跨径钢桥钢箱梁桥面板普遍存在疲劳开裂的现状,提升钢桥面铺装体系正常服役寿命,提出了一种钢-超高延性混凝土组合桥面方案:组合桥面主要由正交异性钢桥面板、配筋超高延性混凝土层和沥青磨耗层组成,钢桥面板上表面焊接栓钉,并设置防水黏结层,超高延性混凝土层与钢桥面板间通过栓钉相连,超高延性混凝土层上表面采取表面粗糙处理,并设置防水黏结层,确保与其上的沥青磨耗层之间形成可靠连接。以虎门大桥钢箱梁为背景,采用有限元软件Abaqus对所提出的组合桥面铺装体系进行了力学性能分析。分析结果表明:采用组合桥面铺装体系,可明显提升正交异性钢桥面铺装体系的整体刚度,使得正交异性钢桥面板关键受力部位的应力水平降低25%~45%,显著延长钢桥面板疲劳寿命。制作了足尺钢箱梁子结构试验模型并开展了疲劳试验研究,疲劳试验结果表明:在规范规定的疲劳车荷载及高于疲劳车荷载的疲劳荷载作用下,累计经历400万次疲劳试验后,组合桥面铺装结构铺装层和钢桥面板均未出现破坏迹象,采用钢-超高延性混凝土组合桥面,可有效延长钢桥面铺装结构使用寿命。研究成果为既有存在病害的钢桥钢箱梁承载力的恢复甚至提高,乃至新建钢桥的桥面铺装提供了一种有益的选择方案。  相似文献   

15.
为解决钢-混组合梁负弯矩区桥面板的开裂问题,以桥面连续钢-混组合梁为研究对象,负弯矩区桥面板采用超高性能混凝土(Ultra-High-Performance Concrete,UHPC)代替传统普通混凝土,对其抗裂性能展开研究,并设计3根不同负弯矩区接口形式的钢-UHPC组合梁,采用一种独特的转角加载方式进行全过程静力加载试验,获得转角、临界开裂荷载、应变等关键试验数据;基于Abaqus的混凝土塑性损伤模型建立试验梁的非线性有限元模型,并对试验过程进行模拟。研究结果表明:钢-混组合梁负弯矩区采用UHPC,能明显提高负弯矩区的开裂性能、有效解决了负弯矩区桥面板的开裂问题;建议了合理的负弯矩区接口形式及负弯矩区UHPC纵向铺设长度取0.1L;采用黏结滑移理论,提出了简易的UHPC裂缝宽度计算公式。  相似文献   

16.
该文以开口加劲肋正交异性钢桥面铺装体系作为研究对象,建立了包括桥面板和铺装的整体三维有限元分析模型,研究了荷载作用下铺装层的力学特性.分析表明,横向拉应力是开口加劲肋正交异性钢桥面铺装设计的一个重要控制指标;开口加劲肋正交异性钢桥面铺装层问剪应力较大,在铺装结构设计时应注意选择具有较强抗剪强度的粘结材料;开口加劲肋正交异性钢桥面铺装对车辆荷载的应力应变响应具有很强的局部效应.  相似文献   

17.
为了克服传统预应力混凝土主梁、钢主梁、钢-混凝土组合主梁由于材料和结构本身缺陷所引起的病害,提出了适用于(特)大跨径桥梁且无横向表面受拉接缝的钢-UHPC(Ultra-high Performance Concrete)轻型组合桥梁结构。为验证轻型组合梁用于斜拉桥的可行性,建立了空间有限元模型进行静力性能分析和疲劳应力幅计算,并制作了9个足尺条带模型试验梁,开展了静载试验研究。研究结果表明:受拉钢筋配筋率、钢筋直径、直线型纤维直径和长度对UHPC的初裂应力影响不大,而纤维带端钩能显著提高初裂应力;端钩型、直线型纤维UHPC试验梁正弯矩初裂应力分别为19.4,10.6 MPa,前者高出后者83%,负弯矩初裂应力分别为13.8,8.4 MPa,前者高出后者64%;正常使用极限状态时,端钩纤维试验梁正负弯矩初裂应力分别为华夫板下缘、上缘频遇组合拉应力的1.45倍、1.66倍;承载能力极限状态时,端钩纤维试验梁正负弯矩名义拉应力试验值分别为华夫板下缘、上缘基本组合名义拉应力的2.1倍、2.4倍;基于S-N曲线预测UHPC华夫桥面板疲劳寿命远大于200万次。  相似文献   

18.
针对武汉军山长江大桥桥面铺装层损坏和正交异性钢桥面板疲劳开裂的问题,珠京方向半幅桥面改造为钢-超高性能混凝土轻型组合桥面结构,厚55 mm的超高性能混凝土(UHPC)层采用短栓钉与钢桥面板连接,与上部SMA10沥青混凝土(厚30 mm)采用环氧树脂粘结材料连接。利用ANSYS软件建立局部梁段有限元模型,进行改造前、后的疲劳细节处应力幅对比分析,并基于健康监测系统以及钢箱梁局部应变监测系统,对组合桥面改造后效果进行实时监测。结果表明:UHPC层对面板与U肋连接细节应力影响极为明显,与柔性铺装相比,应力降幅最高为86.4%,可极大降低钢桥面板的开裂风险;桥面改造后,U肋底部、顶板底部、横隔板构造细节处的应力幅值、等效应力均明显降低,可显著提高钢桥面板的疲劳寿命。  相似文献   

19.
正交异性钢桥面板的板-肋焊接处是车辆荷载下极易开裂的位置,通过UHPC加固可以有效减小钢桥面板的疲劳风险。为了研究UHPC加固钢桥面板的效果,基于线弹性断裂力学展开有限元分析。通过正交异性钢桥面板试验案例作为参考对焊趾处的疲劳性能进行计算,验证了有限元模型的可靠性,通过在焊接细节处插入初始裂纹进行应力强度因子计算分析,考虑不同加载位置以及UHPC层厚度对裂纹尖端的应力强度因子值的影响。研究结果表明:顶板处焊缝位置的热点应力要高于U肋处的焊缝,热点应力受荷载位置影响较为明显;增加UHPC层可有效增加正交异性钢桥面板的刚度,从而减少裂纹尖端的应力集中,增设50 mm厚的UHPC铺装层时,初始裂纹尖端的应力强度因子减小约89%,研究内容可为UHPC加固钢桥面板设计提供参考。  相似文献   

20.
为避免由于超高性能混凝土(UHPC)与新材料面层的黏结能力较差而引起的层间摩擦滑移造成脱空破损的现象,采用有限元模拟的手段深入研究了粘结剂作用形成组合材料桥面板的层间黏结性能.其黏结性能主要以层间剪应力和法向拉应力来表征,车轮荷载作用于钢桥面板不同位置的受力性能.研究结果表明:UHPC-超薄磨耗层层间剪应力和法向拉应力值会随着车轮加载位置不同而有不同的结果;宁波中兴大桥在各种加载位置下层间剪应力和法向拉应力值均小于实测强度且具有一定的强度储备;随着车轮荷载的增加,层间应力会急剧增加,造成严重的破坏.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号