首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 55 毫秒
1.
The cross-section geometry of a submerged floating tunnel (SFT) has a large effect on hydrodynamic characteristics, structural behavior and service level, making the tunnel cross section the primary factor in optimizing efficiency. Minimizing the mean drag and the dynamic variability in the lift of the SFT cross section under bi-directional (i.e., tidal) flow has a dramatic impact on the reduction of structural displacements and mooring loads. Based on a parametric Bézier curve dynamically comprising the leading-edge radius, tunnel height and width to define the SFT geometry, a sensitivity analysis of the Bézier curve parameters for a fixed aspect ratio with prototype dimensions under uniform flow conditions was conducted by applying Computational Fluid Dynamics (CFD), and the pressure distribution around the SFT cross-section surface was analyzed. A theoretical method comprising the Kármán vortex street parameters was employed to verify the CFD simulation results. In order to determine the SFT cross section with optimal hydrodynamic properties, the mean drag and Root Mean Square (RMS) lift coefficients were selected as optimization objectives, and four Bézier curve parameters were the input variables, in a neural network and genetic algorithm optimization process (a hybrid BP-GA structure), which is less likely to become trapped in local minima. The results show the optimal tunnel cross section has a mean drag and a RMS lift coefficient reduced by 0.9% and 6.3%, respectively, compared to the original CFD dataset.  相似文献   

2.
We studied the effects of the surface roughness and initial gap on the responses of vortex-induced vibration (VIV) of a circular cylinder near a stationary plane wall, employing numerical methods. The VIV response amplitudes, lock-in regions, hydrodynamic forces, VIV trajectories and flow fields for three different surface roughnesses and two different initial gaps were systematically compared. The results reveal that the reduced velocity range can be divided into three regions based on the VIV amplitude as pre-lock-in, lock-in, and post-lock-in regions. The width of the lock-in region is not sensitive to the variation of the roughness. The mean drag coefficient has a decreasing tendency with the increased roughness. For a small initial gap, the clockwise wall boundary layer vortices has coalesced with the clockwise vortices shed from the upper side of the cylinder, which further suppresses the shedding of the counter-clock wise vortices from the lower side of the cylinder. The vortex shedding flow pattern displays a weak 2S mode. However, for a large initial gap, there is no coalescing action operating in the wake region and hence most of the vortex shedding flow patterns show an asymmetric 2S mode.  相似文献   

3.
The effect of rigid bed proximity on flow parameters and hydrodynamic loads in offshore pipelines exposed to turbulent flow is investigated numerically. The Galerkin finite volume method is employed to solve the unsteady incompressible 2D Navier–Stokes equations. The large eddy simulation turbulence model is solved using the artificial compressibility method and dual time-stepping approach. The proposed algorithm is developed for a wide range of turbulent flows with Reynolds numbers of 9500 to 1.5×104. Evaluation of the developed numerical model shows that the proposed technique is capable of properly predicting hydrodynamic forces and simulating the flow pattern. The obtained results show that the lift and drag coefficients are strongly affected by the gap ratio. The mean drag coefficient slightly increases as the gap ratio increases, although the mean lift coefficient rapidly decreases. The vortex shedding suppression happen at the gap ratio of less than 0.2.  相似文献   

4.
Slender subsea structures like pipelines, jumpers and umbilicals when exposed to currents may experience vortex-induced vibrations (VIV), which can shorten their fatigue life and increase the risk of structural failure. In the present study, flow around different configurations of a piggyback pipeline close to a flat seabed has been investigated using the two-dimensional (2D) Unsteady Reynolds-Averaged Navier Stokes (URANS) equations with the k − ω Shear Stress Transport (SST) turbulence model. The Reynolds number (based on the free stream velocity and large cylinder diameter) is equal 3.6 × 106 corresponding to upper-transition regime. The drag forces acting on the cylinders and base pressure coefficient value are well predicted by the present simulations, while the other hydrodynamic quantities (root-mean-square lift coefficient, Strouhal number) are predicted reasonably well as compared to published experimental data. The piggyback pipeline in the present study is modeled as two circular cylinders with a diameter ratio d/D = 0.2 (D denoting diameter of the large cylinder, d is diameter of the small cylinder). These two cylinders are clamped together at a distance G/D = 0.2. The two rigidly coupled cylinders are elastically supported and free to vibrate in two degrees of freedom. The effects on the vibration amplitudes and hydrodynamic forces are analyzed. The flow structures around the cylinders are investigated to explain the variations in observed structural responses. Depending on the angular position (α) of the small cylinder, the lock-in regime is narrower (α = 0°) or significantly wider (α = 180°) when compared to that of a single cylinder.  相似文献   

5.
船型设计是船舶总体设计中一项极其复杂且又重要的内容,船舶的结构设计、性能计算、总布置等都要以船型为依据,因此,如何实现船型参数化设计尤为重要。FRIENDSHIP系统为船型设计提供了基于Feature特征和仿真驱动设计的参数化方法和实现机制。在对船型参数化基本理论———特征参数、特征曲线和曲面生成等进行详细阐述的基础上,以某型船艉部裸船体为例,具体阐述了船型参数化的实现流程,以及以Feature、Curveengine和Meta surface为特征机制的船型参数化的具体步骤。以Feature特征为核心的船型参数化方法不仅能为船型曲面的快速建立提供技术支撑,还可以为性能分析和优化提供基础条件。  相似文献   

6.
应用升力面理论涡格法和面元法,建立了拖式吊舱推进器非定常水动力性能的数值计算方法。螺旋桨桨叶采用升力面理论涡格法计算,吊舱舱体及支架采用HESS-SMITH面元法计算,螺旋桨与吊舱及支架之间的相互影响通过迭代计算来处理。针对拖式吊舱推进器,通过系统的计算和分析,研究了螺旋桨负荷、吊舱和支架诱导速度各分量以及标称与实效诱导速度对其水动力性能的影响。研究表明,就吊舱及支架的实效诱导速度而言,轴向及周向诱导速度主要由支架引起,径向诱导速度主要由吊舱舱体引起。当考察吊舱推进器的定常水动力性能时,可略去吊舱诱导速度的径向及周向分量;考察非定常性能时,可略去径向分量,但应考虑周向分量的影响。以吊舱及支架的标称诱导速度作为进流,将导致非定常推力、扭矩的平均值降低,脉动量幅值减小,因此,虽然标称诱导速度容易得到,但据此进行吊舱推进器的性能预报或设计都会引起一定的误差。非定常水动力的脉动幅值取决于船尾伴流与吊舱诱导速度的相对比例,略去吊舱诱导速度会导致桨叶非定常力的变化特征发生较大变化。  相似文献   

7.
Submerged floating tunnel (SFT) is an innovative cable-supported structural system for crossing deep and long-distance ocean environments. In the complex ocean environment, the construction of SFT needs to consider wave and current forces. Specific construction measures and control also require in-depth study and understanding of the dynamic response of SFT under such environmental loads. In this study, the dynamic response of SFT and cable forces under the action of waves alone and wave-current interactions are investigated by using a large wave-current basin. A total of 138 regular wave and wave-current cases were conducted during the experiments, and the influence of waves and wave-current interactions on the dynamic response of SFT and cable forces are discussed in detail by combining experimental data with corresponding analysis. Results show that the wave height, current velocity, and ratio of wavelength to structure size are important factors affecting the dynamic response of SFT and cable forces. The multi-anchor cable arrangement used in the present experimental tests distribute cable force more effectively and reduce the potential safety hazard caused by cable breakage. This study can provide a useful reference for the construction and control of the single SFT segment under construction in a complex ocean environment, especially under the interaction of waves and currents.  相似文献   

8.
Vortex-induced vibrations of a rigid circular cylinder were studied by constructing a theory based on a wake oscillator model under quasisteady approximations, thereby evaluating vortex-induced hydrodynamic forces acting on the cylinder. A lock-in limit line representing the boundary for the occurrence of frequency lock-in was also theoretically derived. Hydrodynamic forces in forced oscillation problems estimated by the theory were compared with measured ones. Although some discrepancies were found, particularly in cases with high-frequency oscillations, good agreement was achieved in most cases. Accordingly, we conclude that the present theory captures well real phenomena in the wake downstream of a cylinder subjected to a flow.  相似文献   

9.
This study investigates the hydroelastic analysis of a moored SFT (submerged floating tunnel) and the corresponding hydrodynamic pressure distribution under wave excitations. Time-domain discrete-module-beam (DMB) method, in which an elastic structure is modeled by multiple sub-bodies with beam elements, is employed to express the deformable tunnel with multiple mooring lines. Moreover, the top-down scheme is also adopted for detailed structure analyses with less computational cost, which applies the calculated hydrodynamic pressure distribution over SFT's surface to the three-dimensional finite element model. The hydrodynamic pressure includes both wave-induced diffraction pressure and motion-induced radiation pressure. For the validation of the developed numerical approach, comparisons are made with computationally intensive hydroelastic-structural direct-coupled method, two-dimensional wave flume experiment, and independently developed inhouse moored-SFT-simulation program. Furthermore, the influences of flexural motions with buoyancy-weight ratio (BWR) (or bending stiffness) and regular/irregular wave conditions on the dynamic pressure distribution and the resulting local stresses are investigated.  相似文献   

10.
Under severe sea wave conditions, the mooring tethers of submerged floating tunnel (SFT) might go slack. It may cause the structure failure during the service lifetime of SFT. The paper investigated SFT dynamics when going through tether slacking and the related snap force under wave conditions. Besides the nonlinearity of fluid drag and of structural geometry for a relative large structure displacement, the problem is characterized by the nonlinearity due to the discontinuity in axial stiffness of the tethers. To include these nonlinearities, the method of Lagrange energy is used to build the governing equations of SFT motion, and a bilinear oscillator is introduced to simulate the mooring tether operating in an alternating slack-taut state. The sensitivities of the occurrence of tether slacking to wave height and wave period are investigated. Results show that at a large wave height SFT tether will go slack and snap force occurs. SFT responses are categorized into three types of state according to the dynamic response characteristics of tether tension. Effects of two fundamental structure parameters, buoyancy-weight ratio (BWR) and inclined mooring angle (IMA), on the dynamic responses of SFT are analyzed. A slack-taut map of SFT tethers is built. It intuitively describes the occurrences of slack and snap force with different combinations of the two parameters. An analytical approach for slack prediction by deriving the slack criterion is provided to reveal the mechanism of the presented slack-taut map. By present research, the authors tried to make their effort to provide an alternative philosophy for SFT structural design on concerning preventing the occurrence of tether slacking and snap force.  相似文献   

11.
Characteristic flow patterns generated by macrozoobenthic structures   总被引:2,自引:2,他引:0  
A laboratory flume channel, equipped with an acoustic Doppler flow sensor and a bottom scanning laser, was used for detailed, non-intrusive flow measurements (at 2 cm s− 1 and 10 cm s− 1) around solitary biogenic structures, combined with high-resolution mapping of the structure shape and position. The structures were replicates of typical macrozoobenthic species commonly found in the Mecklenburg Bight and with a presumed influence on both, the near-bed current regime and sediment transport dynamics: a worm tube, a snail shell, a mussel, a sand mound, a pit, and a cross-stream track furrow. The flow was considerably altered locally by the different protruding structures (worm tube, snail, mussel and mound). They reduced the horizontal approach velocity by 72% to 79% in the wake zone at about 1–2 cm height, and the flow was deflected around the structures with vertical and lateral velocities of up to 10% and 20% of the free-stream velocity respectively in a region adjacent to the structures. The resulting flow separation (at flow Reynolds number of about 4000 and 20,000 respectively) divided an outer deflection region from an inner region with characteristic vortices and the wake region. All protruding structures showed this general pattern, but also produced individual characteristics. Conversely, the depressions (track and pit) only had a weak influence on the local boundary layer flow, combined with a considerable flow reduction within their cavities (between 29% and 53% of the free-stream velocity). A longitudinal vortex formed, below which a stagnant space was found. The average height affected by the structure-related mass flow rate deficit for the two velocities was 1.6 cm and 1.3 cm respectively (80% of height and 64%) for the protruding structures and 0.6 cm and 0.9 cm (90% and 127% of depth) for the depressions. Marine benthic soft-bottom macrozoobenthos species are expected to benefit from the flow modifications they induce, particularly in terms of food particle capture due to altered particle pathways and residence times, but also for the exchange of gases, solutes and spawn. The present results confirm previous studies on flow interaction effects of various biogenic structures, and they add a deeper level of detail for a better understanding of the fine-scale effects.  相似文献   

12.
Vortex-induced motion is an oscillatory phenomenon which occurs to a floating body with low aspect ratio. The basic phenomenological study about the effects of free surface and end cell on flow around a finite fixed circular cylinder was investigated in this study using particle image velocimetry and hydrodynamic force measurement. It was found from the former experiment that the wake of the cylinder is influenced by the both end cell and free surface. Blowup and back flow are generated from the end cell, and their effects are suspended by free surface. The result of hydrodynamic force measurement showed the effect of Reynolds number, Froude number, and the aspect ratio of the floating body on the hydrodynamic force. Fluctuating components of hydrodynamic coefficients decrease for increasing Reynolds number, Froude number, and the aspect ratio. On the other hand, the mean drag coefficient increases as Froude number increases and decreases as the aspect ratio increases. The interpretation to these results was discussed in comparison with flow structures observed in the experiment. In addition, it was found that the effect of Reynolds number on the mean drag coefficient changes at different aspect ratios. A possible interpretation to this phenomenon was proposed.  相似文献   

13.
A self-tuning fuzzy PID (ST-FPID) control scheme is implemented within a joint interactive (Matlab/Simulink/Fluent) co-simulation framework for effective two degrees of freedom (2DOF) vortex-induced vibration (VIV) control of an elastically-mounted circular cylinder in laminar cross-flow of incompressible non-Newtonian power-law fluids based on the control action of a single transverse force actuator. The model-free controller, which systematically tunes the control parameters online in real time based on given rules, is well-known to be highly advantageous over the previously employed conventional PID controllers. It is particularly capable of handling the intricate non-linear dynamic effects inherent in the complex fluid rheology of non-Newtonian flow past the cylinder in presence of unmodeled system dynamics, high parametric uncertainties, diverse operational conditions, and time-varying external disturbances and control signals. Extensive numerical simulations reveal that the complex shear-thinning and shear-thickening behaviors of fluid viscosity can substantially influence the cylinder dynamic response, applied hydrodynamic forces, and flow structure. In particular, effectiveness and high performance of the adopted ST-FPID control strategy in substantial suppression of the high amplitude coupled 2DOF VIV of the elastically-mounted cylinder at selected critical reduced velocities in the lock-in region are established for a wide range of power-law index parameters (e.g., up to 83% reduction in RMS value of cylinder cross-flow displacement and up to 35% reduction in RMS value of cylinder in-line displacement for n=1and U* = 5 at Re = 100). Also, the vigorous action of the error-driven ST-FPID controller in forcing the high strength vortex shedding patterns of the uncontrolled cylinder out of the lock-in condition into the classical von Kármán vortex street of 2S-type mode of moderately weaker strengths is verified.  相似文献   

14.
Hydrodynamic load and motion response are the first considerations in the structural design of a submerged floating tunnel (SFT). Currently, most of the relevant studies have been based on a two-dimensional model test with a fixed or fully free boundary condition, which inhibits a deep investigation of the hydrodynamic characteristics with an elastic constraint. As a result, a series of difficulties exist in the structural design and analysis of an SFT. In this study, an SFT model with a one-degree-of-freedom vertical elastically truncated boundary condition was established to investigate the motion response and hydrodynamic characteristics of the tube under the wave action. The effect of several typical hydrodynamic parameters, such as the buoyancy-weight ratio, γ, the relative frequency, f/fN, the Keulegan–Carpenter (KC) number, the reduced velocity, Ur, the Reynolds number, Re, and the generalized Ursells number, on the motion characteristics of the tube, were selectively analyzed, and the reverse feedback mechanism from the tube's motion response to the hydrodynamic loads was confirmed. Finally, the critical hydrodynamic parameters corresponding to the maximum motion response at different values of γ were obtained, and a formula for calculating the hydrodynamic load parameters of the SFT in the motion state was established. The main conclusions of this study are as follows: (i) Under the wave action, the motion of the SFT shows an apparent nonlinearity, which is mainly caused by the intensive interaction between the tube and its surrounding water particles, as well as the nonlinearity of the wave. (ii) The relative displacement of the tube first increases and then decreases with increasing values of f/fN, Ur, KC number, Re, and the generalized Ursells number. (iii) γ is inversely proportional to the maximum relative displacement of the tube and the wave force on the tube in its motion direction. (iv) Under the motion boundary condition (as opposed to the fixed boundary condition), the peak frequency of the wave force on the SFT in its motion direction decreases and approaches the natural vibration frequency of the tube, whereas the wave force perpendicular to the motion direction increases. When the incident wave frequency is close to the natural vibration frequency of the tube, the tube resonates easily, leading to an increased wave force in the motion direction. (v) If the velocity in the Morison equation is substituted by the water particle velocity measured when the tube is at its equilibrium position, the inertia coefficient in the motion direction of the tube is linearly related to its displacement, whereas that in the direction perpendicular to the motion direction is logarithmically related to its displacement.  相似文献   

15.
The wakes of high-speed passenger-only ferries that operated through Rich Passage, on the Seattle-Bremerton ferry route, caused beach erosion and damage to habitat. A task was initiated to design a low-wake high-speed vessel using multi-fidelity CFD based design optimization by using low-fidelity potential flow solvers for initial global design optimization and by using URANS solvers for high-fidelity tuning of the optimized design. This simulation based design process involved a close collaboration between ship designers, and hydrodynamics and CFD specialists, whose collective expertise guided the evolution of the design based on both hydrodynamic and structural aspects. The initial hull shape optimization using potential flow code was carried out by blending three different initial concepts provided by the designers. Subsequently, URANS was used to evaluate the potential flow optimized hull and to further optimize the hull configuration parameters, namely, the centre-of-gravity, demihull spacing, foil location, foil angle and slenderness ratio at different displacement conditions. The URANS based configuration optimization also took into account the far field wakes’ energy spectrum with an objective of reducing the energetic, low frequency far field wakes which are associated with beach flattening on the mixed sand and gravel beaches. Calculation of the far field wake using URANS would require an unfeasibly large domain size; therefore, a Havelock code with a source distribution matching the URANS calculated near field wave elevation was used to propagate the wakes into the far field. The end result of the optimization was a design with significantly reduced far field wake, which is currently being built for experimental testing.  相似文献   

16.
舰船呆木设计及对操纵性影响研究   总被引:1,自引:0,他引:1  
针对排水型舰船尾部线型特征,提出船体尾部呆木线型设计的数学函数,定义了呆木线型的特征量,并设计了系列呆木线型;运用有效展舷比概念扩充了船体水动力经验公式,得到呆木线型对船体水动力影响的估算方法;采用"分离型"操纵性数学模型预报了系列呆木对舰船操纵性的影响,得到呆木面积与航向稳定性提高成正比等结论。  相似文献   

17.
In case of a submerged floating tunnel (SFT), which is difficult to cast in-site underwater construction, it is modularized on land and then assembled them in the field. Therefore, it is influential to investigate the structural performance of the joints between the modules. A concept of the steel-concrete composite hollow in the SFT, which stably maintains the joints, has been proposed by applying prestressing method to resist various external loads. In this study, the bending behavior of module joints was experimentally analyzed to evaluate the safety for the bending deformation that is dominant in SFT. Test results show that there is a difference at the module joint portion in the performance depending on whether or not the inner steel tube is connected. The bending stiffness of the module joints in the SFT was very similar but there was a difference in strength. The maximum strength was increased from 700 kN to 1200 kN when the inner tube was connected, and the residual displacement was increased from 15 mm to 40 mm. As a result, in the design of the module joint, depending on the purpose of SFT, it is possible to consider both methods which is allowing the ductility behavior of internal tube and controlling the tight connection. Moreover, the failure criterion of the bending behavior of the module joint can be selected as the maximum load or deformation limit.  相似文献   

18.
针对复式河槽的断面形态对称与否,对其综合糙率进行研究。根据大量的水槽试验进行整理分析,主要针对河槽几何形态以及相对水深比(hf/Hm)对复式河槽的影响拟合出综合糙率表达式。结果表明,在一定范围内,综合糙率随滩槽宽度比的增大而增大。并根据对比对称与非对称的计算结果,认为对称情况下的综合糙率比非对称情况下偏大。  相似文献   

19.
肥大船型艏型改变对性能的影响   总被引:1,自引:0,他引:1  
对同一艘肥大船进行艏型变换,运用数值模拟对艏型变换后的模型进行计算,从而分析比较各个模型的船艏舭涡、压力分布、阻力系数、艉部伴流等的变化情况。  相似文献   

20.
文章采用基于边界瞬时涡量守候的拉格朗日方法(IVCBC),结合并列双圆柱的特点,建立了双圆柱绕流数值计算模型。对高雷诺数下Re=6×10~4,间隙率为T/D=1.1~7的并联圆柱双圆柱二维绕流特性进行了研究。提出了双圆柱间隙中点的速度区别宽窄尾流的新方法。分别讨论了流体力系数随间距增加的特点,脉动流体力的特点,尾流特征以及斯托哈尔数特征。研究发现:区别宽窄尾流的新方法是可靠的;在双圆柱尾流附近有五种尾流模型存在;同时发现了在宽窄尾流的频率,存在一个中间频率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号