首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper we present a full-scale experimental field study of the effects of floater motion on a main bearing in a 6 MW turbine on a spar-type floating substructure. Floating wind turbines are necessary to access the full offshore wind power potential, but the characteristics of their operation leave a gap with respect to the rapidly developing empirical knowledge on operation of bottom-fixed turbines. Larger wind turbines are one of the most important contributions to reducing cost of energy, but challenge established drivetrain layouts, component size envelopes and analysis methods. We have used fibre optic strain sensor arrays to measure circumferential strain in the stationary ring in a main bearing. Strain data have been analysed in the time domain and the frequency domain and compared with data on environmental loads, floating turbine motion and turbine operation. The results show that the contribution to fluctuating strain from in-plane bending strain is two orders of magnitude larger than that from membrane strain. The fluctuating in-plane bending strain is the result of cyclic differences between blade bending moments, both in and out of the rotor plane, and is driven by wind loads and turbine rotation. The fluctuating membrane strain appears to be the result of both axial load from thrust, because of the bearing and roller geometry, and radial loads on the rotating bearing ring from total out-of-plane bending moments in the three blades. The membrane strain shows a contribution from slow-varying wind forces and floating turbine pitch motion. However, as the total fluctuating strain is dominated by the intrinsic effects of blade bending moments in these turbines, the relative effect of floater motion is very small. Mostly relevant for the intrinsic membrane strain, sum and difference frequencies appear in the measured responses as the result of nonlinear system behaviour. This is an important result with respect to turbine modelling and simulation, where global structural analyses and local drivetrain analyses are frequently decoupled.  相似文献   

2.
Several floating wind turbine designs whose hull designs reflect those used in offshore petroleum industry have emerged as leading candidates for the future development of offshore wind farms. This article presents the research findings from a model basin test program that investigated the dynamic response of a 1:50 scale model OC3 spar floating wind turbine concept designed for a water depth of 200 m. In this study the rotor was allowed to rotate freely with the wind speed and this approach eliminated some of the undesirable effects of controlling wind turbine rotational speed that were observed in earlier studies. The quality of the wind field developed by an array of fans was investigated as to its uniformity and turbulence intensity. Additional calibration tests were performed to characterize various components that included establishing the baseline wind turbine tower frequencies, stiffness of the delta type mooring system and free decay response behaviour. The assembled system was then studied under a sequence of wind and irregular wave scenarios to reveal the nature of the coupled response behaviour. The wind loads were found to have an obvious influence on the surge, heave and pitch behaviour of the spar wind turbine system. It was observed from the experimental measurements that bending moment at the top of the support tower is dominated by the 1P oscillation component and somewhat influenced by the incoming wave. Further it was determined that the axial rotor thrust and tower-top shear force have similar dynamic characteristics both dominated by tower’s first mode of vibration under wind-only condition while dominated by the incident wave field when experiencing wind-wave loading. The tensions measured in the mooring lines resulting from either wave or wind-wave excitations were influenced by the surge/pitch and heave couplings and the wind loads were found to have a clear influence on the dynamic responses of the mooring system.  相似文献   

3.
The application of floating wind turbines is limited by the high cost that increases with the water depth. Offshore installation and maintenance continue to consume a high percentage of the project budget. To improve the installation efficiency of the floating offshore wind turbine, a novel concept is proposed by the SFI MOVE project. Several wind turbine superstructure components are preassembled onshore and carried to the installation site by a catamaran construction vessel. Each assembly can then be installed using only one lift, and the concept is less sensitive to weather conditions. In this paper, a control algorithm of the proposed hydraulic active heave compensator system is developed using singular perturbation theory to cancel the relative motion between the spar top and gripped preassembly bottom. Closed-loop stability is proven, and the simulation results show that the installation efficiency is improved with an increase in the acceptable weather conditions.  相似文献   

4.
The development of robust design tools for offshore wind turbines requires knowledge of both wave and wind load models and response analysis. Verification of the numerical codes is required by the use of experiments and code-to-code comparisons. This paper presents a hydroelastic code-to-code comparison between the HAWC2 and USFOS/vpOne codes for a tension leg spar (TLS) wind turbine with a single tether. This concept is hence based on the TLP and Spar concepts. The comparison is performed using coupled hydroelastic time domain simulations. Several aspects of modelling, such as wave simulation, hydrodynamic and structural modelling, are addressed for the TLS. Wave-induced motions of the support structure affect the power performance of a wind turbine. Furthermore, overload of the tension leg should be avoided. In this paper, the motion and tension responses are compared. The tension leg introduces nonlinear effects on the spar motion. These nonlinear effects include combined-frequency effect such as double, difference and sum of wave, as well as natural pitch and surge frequencies. Hydrodynamic loads are based on a combination of the Morison formula and the pressure integration method. A comparison indicates that the motion and tension responses obtained in the two codes are in good agreement.  相似文献   

5.
王涵  胡志强 《船舶工程》2018,40(1):99-105
以200 m作业水深的5 MW OC3单柱式浮式风力机为研究对象,采用FAST程序对其在不同海况下的运动进行全耦合时历数值计算,并与采用1∶50缩尺比模型试验所得时历结果进行对比,通过时域以及频域方法对平台主要自由度运动以及系泊拉力进行分析。研究发现:垂向运动带来的自由面记忆效应较纵向和横向小;悬链线式模型所能提供的系泊拉力较张紧式系泊提供的拉力小;风浪联合作用下,风载荷主要激励低频固有频率运动,波浪载荷则主要激励波频运动;平台纵荡和纵摇运动受系泊系统的影响较大,而垂荡运动则不受系泊系统的影响。  相似文献   

6.
In designing the support structures of floating wind turbines (FWTs), a key challenge is to determine the load effects (at the cross-sectional load and stress level). This is because FWTs are subjected to complex global, local, static, and dynamic loads in stochastic environmental conditions. Up to now, most of the studies of FWTs have focused on the dynamic motion characteristics of FWTs, while minimal research has touched upon the internal load effects of the support structure. However, a good understanding of the structural load effects is essential since it is the basis for achieving a good design. Motivated by the situation, this study deals with the global load effect analysis for FWT support structures. A semi-submersible hull of a 10-MW FWT is used in the case study. A novel analysis method is employed to obtain the time-domain internal load effects of the floater, which account for the static and dynamic global loads under the still water, wind, and wave loads and associated motions. The investigation of the internal stresses resulting from various global loads under operational and parked conditions and the dynamic behavior of the structural load effects in various environmental conditions are made. The dominating load components for structural responses of the semi-submersible floater and the significant dynamic characteristics under different wind and wave conditions are identified. The dynamic load effects of the floating support structure are investigated by considering the influence of the second-order wave loads, viscous drag loads induced global motions, and wind and wave misalignments. The main results are discussed, and the main findings are summarized. The insights gained provide a basis for improving the design and analysis of FWT support structures.  相似文献   

7.
New and efficient installation concepts which can reduce the cost of developing an offshore wind farm are of particular interest. This paper explores a promising concept using the small water-plane area twin-hull vessel (SWATH) to install pre-assembled wind turbines (OWT) onto floating spar foundations. A focus is placed on the hydrodynamic performance of the SWATH and the response analysis of the coupled SWATH-spar system. Firstly, the numerically calculated difference-frequency wave force effect and damping forces of the original SWATH were verified with experimental data. Secondly, the original SWATH was modified to satisfy the criteria of weight-carrying capacity and hydrostatic stability. Thirdly, a multibody numerical model for the SWATH-spar system was developed, in which the hydrodynamic and mechanical couplings between the SWATH and a spar were considered. The SWATH is equipped with a dynamic positioning system to counteract the slow-drift wave force effects. The nonlinear time-domain simulations were carried out for the mating stage when a wind turbine is lifted above the spar foundation. Based on the analysis of statistics of the relative displacement and velocity of the tower bottom and the spar top, the installation concept with SWATH is found to be of decent performance. Finally, recommendations are provided for future research on this concept, which contributes to developing next-generation installation concepts for bottom-fixed and floating wind farms.  相似文献   

8.
Floating offshore wind turbines are a novel technology, which has reached, with the first wind farm in operation, an advanced state of development. The question of how floating wind systems can be optimized to operate smoothly in harsh wind and wave conditions is the subject of the present work. An integrated optimization was conducted, where the hull shape of a semi-submersible, as well as the wind turbine controller were varied with the goal of finding a cost-efficient design, which does not respond to wind and wave excitations, resulting in small structural fatigue and extreme loads.The optimum design was found to have a remarkably low tower-base fatigue load response and small rotor fore-aft amplitudes. Further investigations showed that the reason for the good dynamic behavior is a particularly favorable response to first-order wave loads: The floating wind turbine rotates in pitch-direction about a point close to the rotor hub and the rotor fore-aft motion is almost unaffected by the wave excitation. As a result, the power production and the blade loads are not influenced by the waves. A comparable effect was so far known for Tension Leg Platforms but not for semi-submersible wind turbines. The methodology builds on a low-order simulation model, coupled to a parametric panel code model, a detailed viscous drag model and an individually tuned blade pitch controller. The results are confirmed by the higher-fidelity model FAST. A new indicator to express the optimal behavior through a single design criterion has been developed.  相似文献   

9.
Installation of floating wind turbines at the offshore site is a challenging task. A significant part of the time efficiency and costs are related to the installation methods which are sensitive to weather conditions. This study investigates a large floating dock concept, which can be used to shield a floating wind turbine during installation of tower, nacelle, and rotor onto a spar foundation. In this paper, the concept is described in detail, and a design optimisation is carried out using simple design constraints. Hydrodynamic analysis and dynamic response analysis of the coupled system of the optimum dock and spar are conducted. Two spars of different sizes are considered, and the motion responses of the spars with and without the dock in irregular waves are compared. Through analysis of the motion spectra and response statistics, dynamic characteristics of the coupled system is revealed. The present design of the dock reduces the platform-pitch responses of the spars and potentially facilitates blade mating, but may deteriorate the heave velocity of the spars in swell conditions. Finally, future design aspects of the floating dock are discussed.  相似文献   

10.
浮式海上风力机运动性能和锚泊系统(英文)   总被引:2,自引:0,他引:2  
The development of offshore wind farms was originally carried out in shallow water areas with fixed(seabed mounted) structures.However,countries with limited shallow water areas require innovative floating platforms to deploy wind turbines offshore in order to harness wind energy to generate electricity in deep seas.The performances of motion and mooring system dynamics are vital to designing a cost effective and durable floating platform.This paper describes a numerical model to simulate dynamic behavior of a new semi-submersible type floating offshore wind turbine(FOWT) system.The wind turbine was modeled as a wind block with a certain thrust coefficient,and the hydrodynamics and mooring system dynamics of the platform were calculated by SESAM software.The effect of change in environmental conditions on the dynamic response of the system under wave and wind loading was examined.The results indicate that the semi-submersible concept has excellent performance and SESAM could be an effective tool for floating wind turbine design and analysis.  相似文献   

11.
With the gradual implementation of offshore wind energy production, the future tendency is to expand into the deeper water. The jacket foundations will take the place of the present monopile foundations when the water depth increases. The foundations account for the majority of the construction cost for offshore wind farms, and the structural optimization of jackets will bring lucrative economic benefits. Structural optimization is a complex iterative process that requires huge computing costs. Therefore, this paper proposes a structural optimization method based on surrogate models to solve this problem effectively and swiftly obtain optimized design schemes of lightweight jackets for offshore wind turbines. The structural responses of jacket wind turbine systems under the equivalent static extreme loads with a recurrence period of 50 years are mainly considered in structural optimization design, and the key optimization variables of jackets are determined by parameter sensitivity analysis. The finite element models of jackets are transformed into surrogate models, and the genetic algorithm is employed to optimize the surrogate models directly. The optimized jackets are additionally verified through coupled dynamic analysis, besides, buckling strength and fatigue life are also checked. And local refined optimizations are carried out for the failure members. According to the optimized design schemes of lightweight jackets for 30 m, 50 m and 70 m water depths, it is demonstrated that the structural optimization design method is adequate and efficient for jackets of wind turbines. Parameter sensitivity analysis can cut the number of optimization variables in half to improve the optimization efficiency. Furthermore, the application of surrogate models can significantly speed up the optimization process by saving about 98.61% of the original time consumed. The optimization design method of the jackets for offshore wind turbines proposed in this paper is suitable for practical engineering, with high precision and efficiency.  相似文献   

12.
A linearized aero-hydro-servo-elastic floating wind turbine model is presented and used to perform integrated design optimization of the platform, tower, mooring system, and blade-pitch controller for a 10 MW spar floating wind turbine. Optimal design solutions are found using gradient-based optimization with analytic derivatives, considering both fatigue and extreme response constraints, where the objective function is a weighted combination of system cost and power quality. Optimization results show that local minima exist both in the soft-stiff and stiff-stiff range for the first tower bending mode and that a stiff-stiff tower design is needed to reach a solution that satisfies the fatigue constraints. The optimized platform has a relatively small diameter in the wave zone to limit the wave loads on the structure and an hourglass shape far below the waterline. The shape increases the restoring moment and natural frequency in pitch, which leads to improved behaviour in the low-frequency range. The importance of integrated optimization is shown in the solutions for the tower and blade-pitch control system, which are clearly affected by the simultaneous design of the platform. State-of-the-art nonlinear time-domain analyses show that the linearized model is conservative in general, but reasonably accurate in capturing trends, suggesting that the presented methodology is suitable for preliminary integrated design calculations.  相似文献   

13.
The concept of a shared mooring system was proposed to reduce mooring and anchoring costs. Shared moorings also add complexity to the floating offshore wind farm system and pose design challenges. To understand the system dynamics, this paper presents a dynamic analysis for a dual-spar floating offshore wind farm with a shared mooring system in extreme environmental conditions. First, a numerical model of the floating offshore wind farm was established in a commercial simulation tool. Then, time-domain simulations were performed for the parked wind farm under extreme wind and wave conditions. A sensitivity study was carried out to investigate the influence of loading directions and shared line mooring properties. To highlight the influence of the shared line, the results were compared to those of a single spar floating wind turbine, and larger platform motions and higher tension loads in single lines are observed for the wind farm with shared moorings. The loading direction affects the platform motions and mooring response of the floating offshore wind farm. Comparing the investigated loading directions to the 0-deg loading direction, the variation of mean mooring tension at the fairlead is up to 84% for single lines and 16% for the shared line. The influence of the shared line properties in the platform motions and the structural responses is limited. These findings improve understanding of the dynamic characteristics of floating offshore wind farms with a shared mooring system.  相似文献   

14.
文章采用了空气动力、水动力、控制与弹性完全耦合的时域模拟方法研究了张力腿式浮式风机平台的动力响应.水动力载荷的计算采用了三维势流理论与Morison公式.空气动力载荷的计算采用了叶素动量理论和广义动态尾流理论.利用FAST软件得到了张力腿式浮式风机平台响应的时域结果,并分析了其动力响应特性.建立了描述平台纵荡运动的非线性微分方程,并采用了摄动方法求得其近似解,解释了纵荡运动中由非线性粘性效应引起的高频响应.对数值模拟结果的分析表明高频的响应分量对平台的动力性能有显著的影响.  相似文献   

15.
深水SPAR风机系统全耦合动力响应分析研究   总被引:1,自引:0,他引:1  
文章采用联合开发的计算程序对深水SPAR风机的浮体、锚泊和风机各子系统进行了水—气动力的全耦合数值分析,研究了深水浮式风机系统的动力响应特点。浮体水动力计算采用基于二阶精度的混合波浪模型(Hybrid Wave Model)的MORISON公式,锚泊系统采用细长杆理论通过非线性有限元方法实现,风机系统的空气动力分析采用基于多体气动弹性理论的FAST模块。以浮体控制方程为主体,通过模块间的载荷与位移传递在每个时间步上迭代求解,形成完全耦合的时域分析方法。通过对NREL的5MW SPAR风机系统在随机海况下的水动力响应分析,验证了该方法的有效性,并分析了浮式风机子系统间的混合动力作用。  相似文献   

16.
The exploration for renewable and clean energies has become crucial due to environmental issues such as global warming and the energy crisis. In recent years,floating offshore wind turbines(FOWTs) have attracted a considerable amount of attention as a means to exploit steady and strong wind sources available in deep-sea areas. In this study, the coupled aero-hydrodynamic characteristics of a spar-type 5-MW wind turbine are analyzed. An unsteady actuator line model(UALM) coupled with a twophase computational fluid dynamics solver naoe-FOAM-SJTU is applied to solve three-dimensional Reynolds-averaged NavierStokes equations. Simulations with different complexities are performed. First, the wind turbine is parked. Second, the impact of the wind turbine is simplified into equivalent forces and moments. Third, fully coupled dynamic analysis with wind and wave excitation is conducted by utilizing the UALM. From the simulation, aerodynamic forces, including the unsteady aerodynamic power and thrust, can be obtained, and hydrodynamic responses such as the six-degrees-of-freedom motions of the floating platform and the mooring tensions are also available. The coupled responses of the FOWT for cases of different complexities are analyzed based on the simulation results. Findings indicate that the coupling effects between the aerodynamics of the wind turbine and the hydrodynamics of the floating platform are obvious. The aerodynamic loads have a significant effect on the dynamic responses of the floating platform, and the aerodynamic performance of the wind turbine has highly unsteady characteristics due to the motions of the floating platform. A spar-type FOWT consisting of NREL-5-MW baseline wind turbine and OC3-Hywind platform system is investigated. The aerodynamic forces can be obtained by the UALM. The 6 DoF motions and mooring tensions are predicted by the naoe-FOAM-SJTU. To research the coupling effects between the aerodynamics of the wind turbine and the hydrodynamics of the floating platform, simulations with different complexities are performed. Fully coupled aero-hydrodynamic characteristics of FOWTs, including aerodynamic loads, wake vortex, motion responses, and mooring tensions, are compared and analyzed.  相似文献   

17.
Loads from storm waves can in some cases be dimensioning for offshore wind turbine substructures. Accurate determination of nonlinear wave loads is therefore important for a safe, yet economic design. In this paper, the fully nonlinear waves, realized by a fully nonlinear potential wave solver OceanWave3D, are incorporated into coupled aero-servo-hydro-elastic simulations for a reduced set of wave-sensitive design load cases, in comparison with the widely used linear and constrained waves. The coupled aero-elastic simulations are performed for the DTU 10 MW reference wind turbine on a large monopile at 33 m water depth using the aero-elastic code HAWC2. Effect of the wave nonlinearity is investigated in terms of the ultimate sectional moments at tower bottom and monopile mudline. Higher ultimate moments, 5% at tower bottom and 13% at monopile mudline as maximum, are predicated when the nonlinear waves are used. It could be explained by the fact that the extreme nonlinear waves, that are close to the breaking limit, can induce resonant ringing-type responses, and hereby dominate the ultimate load responses. However, the constrained wave approach shows marginal difference compared to the standard linear wave approach. It can be concluded at least for the present configuration that the industry standard approaches (linear and constrained wave approach) underestimate the ultimate load responses on offshore wind turbines in severe sea states.  相似文献   

18.
陈前  付世晓  邹早建 《船舶力学》2012,16(4):408-415
支撑结构设计是大型海上风电机组设计的重要部分。文章分析了海上风电机组的各种环境载荷,并以3MW风力机组为例计算其所受环境载荷,包括作用在支撑结构顶端的由风机叶轮转动引起的水平轴向力、作用在塔筒上的风载荷以及作用在基础上的海流、海浪载荷,并采用非线性弹簧来模拟基础与海底土层之间的相互作用。在考虑风轮影响情况下,利用有限元法对支撑结构进行了模态分析。最后,分析了环境载荷作用下支撑结构的动态响应。计算结果表明,在对海上风力发电机组进行动态响应计算时,环境载荷之间的相互耦合作用不能忽略。  相似文献   

19.
以某大功率海上风力发电机组传动链为研究对象,考虑了斜齿轮螺旋角、压力角、行星轮相位角、齿轮啮合刚度和轴承支撑刚度等因素,采用集中参数法建立传动链的多体动力学模型,通过对模型进行模态分析,获得传动链固有频率,并对计算结果进行对比验证。研究结果表明:采用集中参数法建立传动链模型可以计算出系统的固有频率,并通过与SIMPACK多体动力学软件仿真模型计算结果对比,发现两者计算结果具有很大一致性,表明所建立的集中参数模型可以用来计算传动链固有频率。  相似文献   

20.
The complexity of the dynamic response of offshore marine structures requires advanced simulations tools for the accurate assessment of the seakeeping behaviour of these devices. The aim of this work is to present a new time-domain model for solving the dynamics of moored floating marine devices, specifically offshore wind turbines, subjected to non-linear environmental loads. The paper first introduces the formulation of the second-order wave radiation-diffraction solver, designed for calculating the wave-floater interaction. Then, the solver of the mooring dynamics, based on a non-linear Finite Element Method (FEM) approach, is presented. Next, the procedure developed for coupling the floater dynamics model with the mooring model is described. Some validation examples of the developed models, and comparisons among different mooring approaches, are presented. Finally, a study of the OC3 floating wind turbine concept is performed to analyze the influence of the mooring model in the dynamics of the platform and the tension in the mooring lines. The work comes to the conclusion that the coupling of a dynamic mooring model along with a second-order wave radiation-diffraction solver can offer realistic predictions of the floating wind turbine performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号