首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
为准确评估大规模轨迹数据中的船舶停留活动,构建了两阶段船舶轨迹停留点提取策略,提出了特征驱动的船舶停留行为识别与自动分类方法;以距离、时间和轨迹点数量为约束条件构建了规则模型,检测了原始轨迹中的停留候选轨迹,引入孤立森林算法检测和去除异常离群点,提取了高聚集度的船舶停留轨迹集合;基于船舶靠泊和锚泊的时空特征,定义了轨迹点重复率、相邻点平均距离和最远点对距离3个指标,构建了新的轨迹相似性度量模型,量化了船舶停留轨迹点的分布特征和聚合程度,并利用K近邻算法完成了船舶锚泊行为与靠泊行为的自动分类;采用提出的方法处理了3个不同水域的船舶轨迹数据,准确获取了船舶停留行为的分类结果,并验证了船舶锚泊与靠泊在轨迹时空特征上的差异性,以人工标注结果为参考依据评估了船舶停留行为识别与分类的准确性。研究结果表明:船舶靠泊的轨迹点重复率在80%以上,最远点对距离和相邻点平均距离分别为6~11和1~2 m,船舶锚泊的轨迹点重复率在10%以下,最远点对距离和相邻点平均距离分别为150~250和8~10 m,说明轨迹点重复率、相邻点平均距离和最远点对距离这3个时空特征对船舶靠泊和锚泊具有显著的区分能力;提出的方法对船舶停留识别分类的正确率在98%以上,充分证明了其有效性;采用提出的方法可更新已有码头和锚地的空间位置,自动识别规则水域外的船舶异常停留和规则水域内的超长时间船舶异常停留,掌握在港船舶停留分布情况,识别不同季节、不同时段的热点码头和锚地,从而辅助优化港口规划布局和交通组织。   相似文献   

2.
考虑船舶行为的时序相关性,提出了一种基于上下文自编码的船舶行为语义表征(SRCAE)模型;提取船舶经度、纬度、航速、航向等行为特征参量,建立了行为特征序列;借助连续词袋模型将行为特征序列划分为中心船舶行为和上下文船舶行为,利用深度自编码网络构建了船舶上下文行为的语义表征模型,将得到的中心船舶行为编码作为表征向量输出,通过聚类算法构建船舶行为词典;选取长江口南槽交汇水域作为研究对象,利用船舶自动识别系统产生的数据对提出的模型和方法进行了验证。分析结果表明:所提出的SRCAE模型能有效表征船舶行为之间的上下文联系,与传统自编码器和长短期记忆网络自编码器等模型相比SRCAE模型具有更低的表征误差;分别采用k均值(k-Means)、高斯混合模型(GMM)与核k均值(Kernel k-Means)3种聚类算法提取船舶行为词典,与原始数据相比SRCAE模型产生的表征向量更易于区分不同船舶行为模式,其中k-Means效果最优,轮廓系数、卡林斯基-哈拉巴斯指数和戴维森堡丁指数指标分别达到了0.384、18.308、0.531,共产生转向加速、转向减速、直行加速、直行减速等30种复合行为,有效提取了不同行为模式下船舶行为词组合关系。   相似文献   

3.
为了确定内河多桥水域的航道通过能力,提出多桥航道的交通流仿真模型.以长江武汉段的多桥航道为研究对象,收集大量的船舶交通流历史数据,用统计的方法分析这些数据获得交通流特征,提出基于蒙特卡罗方法的船舶生成模型、队列模型、航路模型和船舶运动模型等;开发仿真系统并对模型进行验证;通过仿真实验确定多桥水域的航道通过能力.仿真结果表明,所提出的内河多桥航道交通流仿真模型是可行和有效的;在目前的通航条件下,长江武汉段多桥水域的航道通过能力与实际的交通流量相比显得非常富余;在安全航速范围内,通过整体提高船舶的航行速度可以显著提高航道的通过能力;航道水深的变化对上行和下行航道通过能力的影响具有明显的差异.  相似文献   

4.
基于船舶自动识别系统(Automatic Identification System, AIS)数据的船舶典型轨迹挖掘需要经过两个重要步骤,一是压缩 AIS 数据,二是聚类压缩后的 AIS 数据。传统的DP(DouglasPeucker)压缩算法,只考虑船舶轨迹的压缩形状,忽视了船舶航行中其他重要信息。为解决此问题,把对地航速和航向加入到DP算法的压缩过程中。在AIS轨迹聚类方面,传统谱聚类方法只对船舶轨迹的位置进行相似性度量,没有考虑船舶轨迹的其他维度,针对此问题,提出多属性轨迹相似性度量方法。由于不同的输入参数影响着最终的聚类质量,引入Calinski-Harabasz指标评价谱聚类算法,实现聚类参数的自适应选择。利用山东威海水域的实际AIS数据进行实例研究,并与传统谱聚类算法做比较实验。实验结果表明,利用该方法提取到的典型轨迹符合真实水域的交通情况,相较于传统谱聚类方法具有更高的聚类质量。  相似文献   

5.
船舶节能是我国建设资源节约型社会和环境友好型社会的迫切需要,船舶营运实时检测控制系统采集主机转速、主机瞬时油耗、主机累计油耗、船舶航速、船舶航行累计里程、船舶经纬度、航向等相关参数,通过建模分析,对航行船舶的经济航速、航道、船舶操纵和船舶状态维修提供指导,获得了良好的船舶节能效果。  相似文献   

6.
基于航向控制系统的船舶动态避碰机理   总被引:1,自引:0,他引:1  
为探索航速矢量变化与船舶避碰之间的动态变化规律(避碰机理),研究了结合船舶领域和速度障碍等方法的静态避碰机理,确定了不考虑船舶改向运动过程与周围环境变化前提下,本船可避让所有物标的航速矢量区间;建立了基于模糊自适应比例积分微分(PID)控制和船舶运动方程的航向控制系统,再现船舶改向过程中的航速矢量非线性变化;基于静态避碰机理和航向控制系统研究了船舶动态避碰机理,求解了符合船舶操纵运动过程的动态避碰改向区间. 研究结果表明,在开阔水域随机设置的多物标环境中,可得到符合航速矢量非线性变化的动态避碰改向区间集合 [?90°,?72°]、[31°,47°]、[62°,79°],受动态船舶主要影响形成改向范围为(?72°,31°)、(79°,90°] 的碰撞航向区间,符合船舶操纵运动对改向避碰的影响规律,可为实现船舶避碰辅助决策、自动避碰和动态避碰路径规划提供基础理论和方法.   相似文献   

7.
针对水上交通具有很大地域特征这一特点,论述了海湾、海峡、港口和内河船闸水域船舶交通流在风险评估和通过能力方面的国内外研究进展,并指出航道通过能力和交通风险存在内在的联系,在研究中需要将这两方面综合考虑.而在方法层面,在Bayes理论框架下建立风险模型,以及采用系统仿真的方式评价水域安全形势和通过能力是当前水上交通流研究中最为常用的方法.  相似文献   

8.
随着海事事故与海上违法行为的不断增多,智能的监控方法成为降低海事事故,打击海上违法行为的有效手段.同时,船舶自动识别系统(Automatic Identification System,AIS)的普及及船舶交通管理系统(Vessel Traffic Service,VTS)的扩建,又为智能监控提供了数据支持.鉴于此,利用船舶自动识别系统提供的数据,分析通航水域船舶信息的分布情况,根据其概率分布采用朴素贝叶斯算法,从船舶航速、航向及距航道边界距离3个方面,构建船舶异常行为检测模型.最后,以成山角通航水域为例,检验模型的有效性.实验结果表明,构建的模型能够有效地完成异常行为监测,减少海事监管人员的工作强度,同时根据实验结果分析了成山角水域船舶航行的特点,并对成山角定线制提出合理化建议.  相似文献   

9.
通过挖掘海量AIS数据, 提出了一种新的航道水深信息获取方法, 即构建船舶安全航行水深参考图; 采用数据预处理的方法对历史与在线的AIS数据进行清洗和修补, 生成船舶运动轨迹; 选定船舶航行区域的时间与经纬度, 采用K-means聚类算法对船舶航行过程中的吃水数据进行聚类分析, 得到不同安全航行区域的船舶分类, 运用BP神经网络模型预测并补齐AIS数据中缺失的船舶最大吃水信息; 分割船舶历史轨迹, 当子轨迹的时间间隔在10~20min时, 采用Spline插值方法对船舶轨迹中的丢失数据进行插值; 采用凸包构建同类船舶的安全航行水深区域图, 将不同吃水类型船舶的安全航行水深区域图合并, 得到船舶安全航行水深合并图; 将不同吃水类型的船舶安全航行水深合并图与航道图叠加, 得到船舶安全航行水深参考图。试验结果表明: 当聚类算法参数设置为4时, 聚类后得到4类船舶, 对应的船舶最大吃水范围分别为0.1~4.8、4.8~6.6、6.6~10.0、10.0~13.0m, 对应的至少可通航船舶吃水分别为1.8、2.4、3.3、5.0m, 说明船舶最大吃水与至少可通航船舶吃水呈正相关关系; 构建的船舶安全航行水深参考图在电子航道图中覆盖了86%的航道, 并与航道图的深水部分重合率为80%, 因此, 构建的船舶安全航行水深参考图能反映航道水深的真实情况, 满足不同类别船舶的导航需求。   相似文献   

10.
为得到适用于受限航道水域船舶间安全间距确定方法,本文基于道路交通工程学的相关理论,引入船速、货种安全系数等参数构建受限航道水域船舶间安全间距计算的跟驰模型,利用该模型得到不同安全水平下,单向行驶船舶之间安全间距的表达式.以某海港进港航道两大型船舶编队进港为例,利用本文提出的船舶间安全间距确定方法从一般安全水平和充分安全水平两种情况下得到了船舶进出港安全间距值,验证了模型的科学性与有效性,为受限航道船舶间安全间距的研究提供理论依据.  相似文献   

11.
内河船舶避碰路径优化研究   总被引:1,自引:1,他引:1  
内河船舶碰撞事故导致重大生命及财产损失,已经引起人们的高度关注.提出一种内河船舶自动避碰路径优化的研究方法,建立了内河船舶操纵运动数学模型,将遗传算法运用到内河船舶避碰路径选优中,提出内河船舶避碰路径优化准则,并构建一种考虑内河航道中运动船舶及障碍物的适应度函数.优化结果表明了本方法的可行性。  相似文献   

12.
考虑船舶操纵特性、《1972年国际海上避碰规则》和良好船艺要求,提出了动态自适应目标船不协调避碰行动的开阔水域智能航行方法;将物标分类、建模并构建数字孪生交通环境,结合航向控制方法、操纵运动和复航模型构建了自动航行模型,推演了船舶非线性操纵运动;基于自动航行模型量化解析了《规则》要求,探究动态避碰机理,建立了可行航向求取方法;在多目标环境中,提出了目标船机动判别方法,研究了《规则》约束下构成自主航行方案的改向时机、幅度和复航时机等要素求取方法。仿真结果表明:依靠信息秒级更新的滚动计算,提出的智能航行方法可自适应剩余误差和目标船随机运动;提出的智能航行方法能将可行航向区间和改向幅度精确到1°;将程序运行和复航时机计算步长设置为1、10 s,设置多类静态物标和6艘保向保速目标船,在640、1 053、2 561和3 489 s,本船进行右转9°、复航、保向保速和复航等操纵可让请所有目标并自主航行至终点;设置目标船在300 s采取不协调转向避让行动,本船在980、2 790、3 622、5 470 s时进行右转9°、左转12°、右转17°和复航等操纵可让请所有目标并自主航行至终点。可见,任意初始状态下的船舶均可沿计划航线自动航行至终点,提出的方法能满足多个、多类动静态物标共存的真实开阔水域环境中的智能航行需要。   相似文献   

13.
通过对宁波-舟山港水域船舶事故的实况调查和分析,结合港口的实际情况。提出了适合港口一体化建设的宁波-舟山港水域船舶事故应急体系模式,并对应急反应体系中的应急组织结构和应急行动流程等重要核心内容进行了相关讨论。  相似文献   

14.
离场航空器四维航迹预测及不确定性分析   总被引:1,自引:0,他引:1       下载免费PDF全文
为了加速基于轨迹运行概念的实施,提出了基于连续动态模型与离散动态模型的航迹预测方法,并将航空器离场分为起飞与爬升两个阶段,实现离场航空器四维轨迹预测.通过深入分析模型构建、航空器意图、初始状态、性能参数以及环境信息等因素,降低了四维航迹预测的不确定性,提高了预测精度.以国内执飞ZSPD-ZUCK的CQH8867航班为实例进行验证,考虑了起飞质量、爬升顶点信息以及风速风向等对航迹预测的影响,以位置误差与时间误差作为评价指标,研究结果表明:本文提出的算法可以将到达离港点时刻的误差控制在1 min以内,满足空中交通管理的需求.   相似文献   

15.
在分析了广东省南沙至西江内河主干航道航行条件的基础上,探讨了南沙至西江内河标准化船型,对我省内河船型标准化具有现实意义.  相似文献   

16.
本文从加强航道治理、改善通航环境,加快港口建设,严格实行运输船舶标准化三方面论述了内河航运业的发展战略。  相似文献   

17.
为研究内河船舶流特性,基于船舶制动机理,分析了船舶制动距离与船长、航速的相关性,给出了制动距离的经验公式,考虑驾驶员经验对实际制动距离的影响,建立了船舶跟驰间距模型。结合江苏地区机动单船、顶推船队、拖驳船队3类船型实例分析,通过与内河船舶领域长轴经验值、100t机动单船的分段线性模型结果的对比,确定了间距模型参数。研究结果表明:3类船型的制动距离分别与单船、船队、最大单驳长度相关,计算长度系数分别为5.98、2.73、17.41,前2类船型的制动距离与航速的平方成正比,拖驳船队与航速的0.85次方成正比;驾驶员的制动操作系数、操作指数应取0.78、2.5。  相似文献   

18.
为刻画托运人对港口、运输方式及陆港的联合选择行为,将港口费用、等待时间、班轮频率、货物价值、单次运量、运输成本、运输及通关时间、准班率、陆港服务作为效用变量,构建港口选择位于上层、运输方式及陆港选择位于下层的巢式Logit模型.基于辽宁部分城市集装箱托运人的RP/SP调查数据,对模型参数进行估计和检验.结果表明,低运量倾向选择公路运输,托运人对多式联运的运输成本、运输及通关时间比公路运输的更重视,对公路运输的准班率比多式联运的更重视,陆港服务对多式联运具有显著正向影响,巢式Logit模型比MNL模型具有更优的统计学特征.  相似文献   

19.
为了改善终端空域扇区和进离场航线对实际空中交通的流量及空间分布的适用性,研究了从大量航空器飞行轨迹中识别主要交通流的方法.在分析飞行轨迹空间特征的基础上,建立了基于3D网格的轨迹间相似性模型.利用谱聚类算法对终端区飞行轨迹样本进行聚类划分,提出了一种基于轨迹聚类核密度估计的盛行交通流和异常轨迹的识别方法,用于从空管雷达记录的飞行轨迹中识别出盛行交通流的实验.实验研究结果表明:该方法将1 476条轨迹划分为5个聚类,识别出5个盛行交通流,且识别结果未受到异常轨迹的影响.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号