首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The idea about preparation of Re-Mo-Ti alloy is put forward because of applications of Re and Mo-Re alloys in aerospace. Basing on the thermodynamics theory, the feasibility of developing a new high temperature alloy Re-Mo-Ti is investigated. The solid solution forming enthalpies of binary alloys Re-Ti, Mo-Ti and Mo-Re are calculated with the Miedema thermodynamics theory. The Miedema theory of binary alloy can be used in ternary alloy through Kohler model or Toop model. The calculated results show that the forming enthalpies of binary alloys Re-Ti, Ti-Mo and Re-Mo are negative, which indicates that binary alloys Re-Ti, Ti-Mo and Re-Mo can form solid solution in wider component area. The forming enthalpies of Re-Mo-Ti ternary alloy are still negative and smaller than those of binary alloys Re-Ti, Ti-Mo or Re-Mo, which indicates it is possible to form large solid solution graph area among ternary alloys of Ti, Mo, Re elements. It is feasible to develop a new high temperature material in thermodynamics, in this material Re-Mo-Ti solid solution as base phase, and the Ti5Re24 intermetallic compounds or interphase ω (Ti4Mo3) as strengthening phase.  相似文献   

2.
This paper discusses mineral composition and pore microstructure characteristics of water-cooled manganese slag and its effects on durability of concrete. The Mn slag has an alveolate pore structure, and the ground Mn slag is characterized by multiangular shape which consists of α′-C2S, C3MS2, CaO·MnO·2SiO2 and C2AS. Experimental results show that the Mn slag has potential hydraulic reactivity. Concrete made with Mn slag as supplementary cementitious materials (SCMs) exhibits very low strength loss and weight loss in the synthetic seawater corrosion and freezing-thawing cycle tests. The research provides useful reference for knowing about Mn slag and for applying Mn slag to improve the durability of concrete.  相似文献   

3.
Calcium silicate slag is the residue of process of pre-desilication alkali lime sintering applied in the high-alumina fly ash to extract the alumina. The quantitative phase analysis (QPA) of the calcium silicate slag has been performed by the Rietveld method based on the powder X-ray diffraction (XRD) with the aid of noncommercial software GSAS-EXPGUI. A known weight of crystalline internal standard (10% CaF2) was added to the calcium silicate slag to calculate the fraction of amorphous phase and other crystalline phases on an absolute basis. Besides, the calcium silicate slag was characterized by X-ray fluorescence (XRF) and thermo gravimetric (TG) differential scanning calorimetry (DSC) to test the QPA results and investigate its other characters. Finally, the results show that the amorphous fraction is 17.5% (hereinafter, the percentages refer to the mass fraction), and the major crystalline phases detected in the calcium silicate slag consist of 23.5% Beta-Ca2SiO4, 10.0% bredigite, 10.3% Ca3Al2O6 (C3A) and 21.6% CaCO3.  相似文献   

4.
The micro-crystalline diamond (MCD) and fine-grained diamond (FGD) films are deposited on commercial silicon nitride inserts by the hot-filament chemical vapor deposition (HFCVD) method. The friction and cutting properties of as-deposited MCD and FGD films coated silicon nitride (Si3N4) inserts are comparatively investigated in this study. The scanning electron microscopy (SEM) and Raman spectroscopy are adopted to study the characterization of the deposited diamond films. The friction tests are conducted on a ball-on-plate type reciprocating friction tester in ambient air using Co-cemented tungsten carbide (WC-Co), Si3N4 and ball-bearing steel (BBS) balls as the mating materials of the diamond films. For sliding against WC-Co, Si3N4 and BBS, the FGD film presents lower friction coefficients than the MCD film. However, after sliding against Si3N4, the FGD film is subject to more severe wear than the MCD film. The cutting performance of as-deposited MCD and FGD coated Si3N4 inserts is examined in dry turning glass fiber reinforced plastics (GFRP) composite materials, comparing with the uncoated Si3N4 insert. The results indicate that the lifetime of Si3N4 inserts can be prolonged by depositing the MCD or FGD film on them and the FGD coated insert shows longer cutting lifetime than the MCD coated one.  相似文献   

5.
研究了乙炔黑、碳纤维和两者的混合物这3种导电剂及用量对锂离子电池负极材料钛酸锂大电流充放电性能的影响.结果表明:导电剂的种类对电极的电化学性能影响较大.粒状乙炔黑表面积丰富但不利于导电网络的形成,电极的极化严重;线性导电剂碳纤维具有较好的导电性和较高的长径比,但与活性物质接触面积小;线性导电剂碳纤维与粒状导电剂乙炔黑相配合,在电极中不但能够形成良好的导电网络,还与活性物质具有较大接触面积,减轻了电极的极化,提高了锂离子二次电池的大电流充放电性能.  相似文献   

6.
A novel process route using tape casting and stacking for fabricating porous scaffold of solid oxide fuel cells (SOFC) was demonstrated. The linear shrinkages of anode (Ni-YSZ, YSZ stands for 3% Y_2O_3(mole fraction) stabilized ZrO_2) and cathode (LSM-YSZ, LSM stands for La_(0.8)Sr_(0.2)Mn0_3) were optimized to be uniform with that of electrolyte during sintering, by controlling the content of pore former. The micromorphology and interface microstructure of the cross-section of the porous scaffold were observed by optical microscope and scanning electron microscope, respectively. The element distribution and phase composition were analyzed by energy dispersive spectrometer and X-ray diffraction, respectively. The results showed that the porous scaffold with regular pore shape and high specific surface area was obtained after sintering at 1 350℃. The fabricated porous scaffold had defect free interfacial structures due to the uniform shrinkage of anode, cathode and electrolyte layers. In addition, it was shown that diffusions of Zr, Ni and La caused a progressive boundary between YSZ, Ni-YSZ and LSM-YSZ layers. The interface between anode and electrolyte (Ni-YSZ/YSZ) was mainly composed of Ni, YSZ and a small amount of NiO, and the interface between cathode and electrolyte (LSM-YSZ/YSZ) was mainly composed of YSZ, LSM and a small amount of La_2Zr_2O_7.  相似文献   

7.
The energetic and electronic structures of precipitates on the Cu-rich side of Cu-Ni-Si alloys were investigated by using the first-principle calculations based on plane-wave pseudopotential method. The negative formation heats and the cohesive energies of these precipitates were estimated with electronic structure calculations, and their structural stability was also analyzed. The results show that δ-Ni2Si, γ-Ni5Si2 and β-Ni3Si precipitates all have great alloying ability and structural stability, which, after comparing their density of states (DOS), is found attributed to the pseudogap effect near the Fermi level (E F) and strong hybridization between the Ni-3d and Si-3p states. Compared with the other two precipitates, the δ-Ni2Si precipitate has the greatest structural stability, which is resulted from its lower DOS at E F and the main bonding peaks slightly moving to the low energy region.  相似文献   

8.
The microstructure and hardness of conventionally solidified Ni-xSi (x = 21.4%, 22%, 24%, 26%) alloys were investigated. The solidification microstructures of different Ni-Si alloys were observed by optical microscope (OM) and scanning electron microscope (SEM) and the phase composition was indentified under the help of energy dispersive X-ray (EDX) analysis. The macro- and micro-hardness of the Ni-Si alloys at room temperature were also examined. The experimental results indicated that both the microstructure and hardness closely depended on the Si content. Due to the vast formation of primary ??-Ni31Si12 phase, the hardness of Ni-26.0%Si alloy was significantly improved compared with that of Ni-21.4%Si eutectic alloy. However, the fracture toughness was greatly weakened simultaneously. The (?? 1-Ni3Si+??-Ni31Si12) lamellar eutectoid structure formed in the primary ??-Ni31Si12 phase exhibited better ductility than single ??-Ni31Si12 phase at the cost of relatively small hardness reduction.  相似文献   

9.
In this study, (100)-oriented growth of Ba0.5Sr0.5TiO3 (BST) /LaNiO3 (LNO) stacks was obtained on Pt(111)/SiO2/Si substrates by r.f. magnetron sputtering. The orientation of the subsequently deposited Ba0.5Sr0.5TiO3 thin film was strongly affected by the LNO under layer, and the BST thin film deposited on the (100)LNO-coated Si substrate was also found to have a significant (100)-oriented texture. Effects of LNO interlayer on the dielectric properties of BST thin films were investigated. As a result, the tunability of BST thin film was greatly improved with the insertion of (100)-oriented LNO under layer with proper thickness. Foundation item: the National Key Lab of Nano/Micro Fabrication Technology (No. 9140C 790310060C79) and the National Natural Science Foundation of China (No. 60701012)  相似文献   

10.
In this study, a homogenization method is employed to determine the values of effective elastic modulus for BaZrO3 which is a promising candidate material for electrolyte in solid oxide fuel cell (SOFC). Comparison between the homogenization and the analysis data reveals that the difference becomes significant with increasing of porosity when upper 20%. The empire mechanic behavior in a typical planar fuel cell is evaluated using finite element method (FEM). Large stress gradient occurs in vicinity of the interface of the electrolyte and the cathode due to theirs mismatch of thermal expansion coefficient (TEC). Moreover, local processing results reveal that microscopic stress concentration around pore near the interface of the electrolyte and the cathode in the cell perhaps produces cracks which may lead to the fail of the electrolyte and the lower energy convention efficiency.  相似文献   

11.
采用激光熔覆技术制备了TiO_2-CNTs/FeNi36复合涂层,研究了核壳式TiO_2-CNTs增强体对激光熔覆复合涂层孔洞、微观结构和摩擦学性能的影响。结果表明:核壳式TiO_2-CNTs增强体的加入大大减小了复合涂层中孔洞数量和尺寸,有效抑制了涂层大孔洞的产生;增强体的加入没有改变因瓦合金基体物相组成,基体合金仍为[FeNi]奥氏体单相。随着增强体含量的增加,复合涂层基体合金的晶格常数逐渐减小,然后保持稳定;复合涂层维氏硬度逐渐增加,然后趋向稳定,最大值为315 HV,约为单一因瓦合金涂层的2.5倍;当增强体含量为1.5 wt%,磨损率最低,较单一因瓦合金涂层降低了60%,复合涂层摩擦学性能得到了提高。  相似文献   

12.
以Mn(Ac)2为锰源,以K2S2O8为氧化剂,采用液相氧化法制备了氧化锰材料和炭/氧化锰复合材料.采用循环伏安、交流阻抗和恒流充放电方法对两种电极材料的电化学电容性能进了表征.结果表明:由于炭的担载,复合材料的电化学电容性能优于纯氧化锰.氧化锰对称型电容器的比电容要远远低于炭/氧化锰的比电容,后者是前者的7~12倍.而氧化锰对称型电容器的内阻要远远高于炭/氧化锰的内阻,前者是后者的4.4~4.5倍.  相似文献   

13.
Layered solid solution material Li1.2Ni0.2Mn0.6O2 is synthesized and the AlF3 is added to improve the electrochemical performance. X-ray diffraction (XRD) results show that the Li1.2Ni0.2Mn0.6O2 samples exhibit layered characteristics. The AlF3 additive is detected by transmission electron microscope (TEM) technology. The electrochemical tests show that Li1.2Ni0.2Mn0.6O2 electrode with AlF3 added delivers better discharge capacity (240mA· h/g), first coulomb efficiency 79.2%, cyclic performance (capacity retention ratio of 100.6% after 50 cycles), and rate capacity (68mA · h/g at 10 capacity (C)) than the pristine sample. Electrochemical impedance spectroscopy (EIS) results show that the charge transfer resistance of Li1.2Ni0.2Mn0.6O2 electrode with AlF3 added increases slower than that of pristine Li1.2Ni0.2Mn0.6O2 after cycling, which is responsible for better cyclic and rate performance.  相似文献   

14.
In this study, sub-micrometer LiFePO4 particles with high purity and crystallinity were synthesized using supercritical hydrothermal method as the cathode material for lithium ion batteries. Experimental results show that templates and calcination time have significant impacts on the purity, particle size and morphology of LiFePO4 particles. The as-prepared LiFePO4 particles using polyvinyl pyrrolidone (PVP) template with additional one hour calcination at 700°C exhibit characteristics of good crystallinity, uniform size distribution, high capacity and cycling performance. The specific discharge capacities of 141.2 and 114.0mA·h/g were obtained at the charge/discharge rates of 0.1 and 1.0 C, respectively. It retained 96.0% of an initial capacity after 100 cycles at 1.0 C rate. The good electrochemical performance of the as-synthesized material is attributed to the synergistic factors of its reasonable particle size and surface areas and high crystallinity.  相似文献   

15.
The ultra-high-strength steel (UHSS) plays an important role in the mechanical industry because of their special performances. The machinability of 30CrMnSiNi2A steel was studied in dry milling with two different coated tools in the present work. This paper introduced that 30CrMnSiNi2A steel was a kind of difficult-to-machine materials. The results showed that the cutting force components of feed direction and cutting width direction, i.e. F x and F y , increased slightly with increasing the cutting speed and feed rate. The values of axial force component F z were much larger than F x and F y , and increased obviously with increasing the milling speed. The workpiece surface had the minimum roughness at the cutting speed of 150 m/min. The physical vapor deposition (PVD) coated ((Ti, Al)N-TiN) insert was more suitable for machining 30CrMnSiNi2A steel than the chemical vapor deposition (CVD) coated (Ti(C, N)-Al 2 O 3 ) insert. Moreover, the main failure modes of PVD-coated insert were micro-chipping and coating spalling. The wear modes of CVD-coated insert were ploughing, coating spalling, and cratering. The serious adhesive wear and the abrasion with some adhesion were the main wear mechanism of PVD- and CVD-coated inserts, respectively.  相似文献   

16.
The effect of La addition on the structure and electrochemical properties of amorphous LaMg11Zr+200Ni (LaMg11Zr: Ni = 1: 2, m: m) hydrogen storage alloy prepared by mechanical alloying was investigated systematically. The results show that the alloys have an amorphous structure after 20 h ball-milling and the particles are significantly refined with the addition of La. The electrochemical tests indicate that the charging resistance of the alloy electrodes decreases with the addition of La. The maximum discharge capacity of the alloy electrodes increases with the increase of La addition, while the cyclic stability and high-rate discharge performance increase firstly and then decrease as the La content increases. When the mass fraction of La is up to 5%, the maximum discharge capacity after charging/discharging of 30 cycles of the alloy electrode is increased from 576.2 to 597.5 mA· h/g, and the capacity retention rate and high-rate dischargeability (HRD) of the alloy electrode are increased by 20.5% and 29.4% respectively compared with those of the alloy electrode without the La addition, exhibiting the best comprehensive electrochemical performances.  相似文献   

17.
Cuprous oxide (Cu2O) thin films have been deposited on glass substrate by reactive magnetron sputtering method using Cu target and argon oxygen gas atmosphere. Effect of oxygen flow rate on structural and optical properties of thin films has been discussed. The results of X-ray diffraction, ultraviolet-visible spectrophotometry and atomic force micrograph indicated that the condition window for single Cu2O phase was about 3.8 to 4.4 cm3/min, and the optimum oxygen flow rate was 4.2 cm3/min. The optical band gap E g of Cu2O film was determined by using the data of transmittance versus wavelength, and slightly decreased from 2.46 to 2.40 eV with the increase of oxygen flow rate from 3.8 to 4.4 cm3/min. The Cu2O film formed at the oxygen flow rate of 4.2 cm3/min had an optical band gap of 2.43 eV.  相似文献   

18.
This paper designs and fabricates CeO2 nanoparticles on a large scale by hydrolysis and oxidation of cerium carbide. The electrochemical supercapacitor behavior of CeO2 nanoparticles was investigated. The nickel foam (NF) supported CeO2 nanoparticles show a high areal capacitance of 119 mF/cm2, demonstrating a strong synergistic effect between NF and CeO2 nanoparticles. The high capacitance of the CeO2/NF nanoparticles is possibly due to an improved conductivity by NF and a better utilization of CeO2 nanoparticles.  相似文献   

19.
Electron beam welding of in situ TiB2p reinforced aluminum composites was studied. The results show that no obvious pores or cracks is presented in the weld seam. The grains in the weld seam are remarkably refined and TiB2 particles distribute much more homogeneously than that in base metal. The hardness values of fusion zone and heat affected zone (HAZ) are both increased in comparison with that of base metal. There are no interface reactions between TiB2 particle and Al matrix. This results supply the evidence that the novel TiB2p reinforced aluminum composites can be well joined with the electron beam welding.  相似文献   

20.
目的探讨T-2毒素对软骨细胞合成一氧化氮(NO)的影响。方法胎儿软骨细胞体外培养,用MTT法检测软骨细胞存活率;用Griess重氮化法测定软骨细胞培养上清液中NO含量;用Western blot检测软骨细胞一氧化氮合酶(iNOS)的表达。结果T-2毒素在质量浓度在1-2 000μg/L的范围内,软骨细胞存活率对其呈较典型的浓度依赖关系和时间依赖关系,而且随着作用时间的延长,浓度依赖关系更为明显;T-2毒素刺激软骨细胞分泌NO和表达iNOS蛋白。结论T-2毒素引起的软骨细胞损伤和生长抑制与T-2毒素刺激软骨细胞表达iNOS蛋白和分泌NO增多有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号