首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
调研了国内外无人驾驶车辆行为决策系统的研究现状,对行为决策系统进行分类,基于国内外行为决策系统研究实例,对基于规则和基于学习算法的不同行为决策系统的实现方式、适用条件及优缺点进行比较,分析了现阶段无人车行为决策系统的研究水平、技术难点和发展趋势,为无人驾驶车辆行为决策系统的设计提供参考。  相似文献   

2.
无人驾驶车辆的行为决策是该领域研究的关键技术之一。在城区环境中,无人驾驶车辆行为决策的最终目标是像熟练的驾驶员一样产生安全、合理的驾驶行为。文章给出一类无人驾驶车辆路口行驶策略,能够使无人驾驶车辆在城区环境中安全、合理地完成一定范围的驾驶行为。  相似文献   

3.
汽车面对的是复杂高动态的行驶环境,且车载传感器信息具有不确定性,对动态环境进行正确态势评估是提高车辆,尤其是智能车行驶安全性的关键因素之一,本文中基于环境态势评估对智能车自主变道决策机制进行研究。首先基于人类驾驶认知机理对车辆环境态势评估模型进行层次化分析,然后利用动态贝叶斯网络实现态势评估,并结合最大期望效用原则实现自主变道决策,最后通过实验验证了本文方法的有效性。结果表明,该方法能在动态复杂环境和车载传感器测量数据存在偏差等信息不确定的条件下,做出正确合理的变道决策。  相似文献   

4.
基于驾驶人的换道操作行为初步提出换道决策辅助系统合适的预警时间。观察换道作业与目标车道跟随车辆之间的联系。实验在西安绕城高速公路某一路段上实现。  相似文献   

5.
针对无人驾驶车辆变道超车场景,研究基于REINFORCE算法和神经网络技术的无人驾驶车辆变道控制策略。通过车辆动力学模型确定模型的反馈量、控制量和输出限幅要求; 设计神经网络控制器的结构,根据REINFORCE算法设计控制器训练方案; 分析经验池数据数值和方差过大的问题,提出1种经验池数据预处理的方法以改进控制器训练方案; 结合无人驾驶车辆运行场景,分析和研究强化学习过程中产生的奖励分布稀疏问题,并针对该问题提出1种基于对数函数的奖励塑造解决方案; 与PID控制器和LQR控制器进行对比实验验证。实验结果表明,与PID相比,该控制策略有更小的最大误差,变道过程更安全; 与LQR相比,该控制策略性能表现接近,以此证明其用于无人驾驶车辆变道控制任务的可行性。此外,记录在不同平台下该控制策略的执行时间以证明其实时性和在轻量级平台运行的可行性。   相似文献   

6.
在复杂动态的城市道路环境中,不同的交通参与者之间会不可避免地产生时间或空间上的冲突。针对该问题,对智能驾驶车辆在城市交叉口左转时潜在的冲突行为进行分析并建立决策模型。考虑了车辆运动模式并基于高斯过程回归模型(GPR)建立了直行车辆长时轨迹预测模型,结合轨迹预测提出了基于冲突消解的智能驾驶车辆决策流程(模型)和考虑多因素的驾驶动作选择方法。基于Matlab/Simulink&Prescan搭建仿真验证平台,联合真实数据对算法进行验证。结果表明,单车场景下,决策模型能够以90%的成功率引导无人驾驶车辆完成通行任务。  相似文献   

7.
决策与规划是自动驾驶系统的中枢,是提高自动驾驶车辆行驶安全、驾乘体验、出行效率的关键。其面临的主要挑战在于如何满足自动驾驶所需的极高可靠性和安全性,以及如何有效应对场景复杂性、环境多变性、交通动态性、博弈交互性及信息完备性并产生类人化的驾驶行为,使车辆自然地融入交通生态。为全面了解决策与规划的前沿问题与研究进展,对其技术要点进行系统梳理与总体概述。首先,从数据驱动的驾驶行为预测、概率模型的驾驶行为预测、个性化驾驶行为预测三方面综述了面向态势认知的行为预测的研究进展;其次,将行为决策总结归纳为反应式决策、学习式决策、交互式决策并逐一进行了分析;再次,从方法论的角度对运动规划及其应用进行对比分析,具体包括图搜索方法、采样方法、数值方法、拟合插值曲线方法等;然后,针对端到端的决策规划的关键科学问题和主要研究进展进行了归纳分析;最后,总结了决策规划对提升自动驾驶车辆智能化水平的重要影响,并展望了其未来的发展趋势与面临的技术挑战。  相似文献   

8.
为了实现高速公路的自由换道行为决策,并满足行车安全高效性、决策结果平稳无震荡、与运动规划模块结合引导车辆行驶等要求,提出了一种基于驾驶人不满度的换道行为决策方法。首先,根据驾驶人的速度期望建立了驾驶人不满度累积模型,并基于驾驶人速度不满累积度产生换道意图。其次,依据不同车道障碍车的运动状态,设计了2种目标车道选择策略,通过预测引擎对各个待选车道进行预测和评估,选取其中行车效率较高的车道作为目标车道,同时建立换道最小安全距离模型,用以在换道全过程中判断换道的可行性。然后,将换道行为决策的结果以目标车道的形式传递给基于改进人工势场的运动规划模块,用于运动规划模块目标的选取,以引导车辆横纵向运动。最后,在CarSim/PreScan/Simulink的联合仿真平台和硬件在环平台上建立多种测试场景,验证换道行为决策算法。试验结果表明:换道行为决策算法能够依据驾驶人速度不满累积度产生稳定的换道意图,进而根据所设计的换道策略选取具有更高行车效率的目标车道,并在换道过程中持续判断换道的可行性,以应对障碍车辆突然加减速等突发状况,保证换道过程的高效性和安全性;换道行为决策算法通过目标车道的转换,引导运动规划模块调整车辆的运动,实现跟车、换道等行为。  相似文献   

9.
为提升智能汽车的自主决策能力,使其能够学习人的决策智慧以适应复杂多变的道路交通环境,需要揭示驾驶人决策机制。首先通过对自然驾驶数据的分析,发现在车辆行驶过程中能够反映驾驶人决策行为的主要运动特征参数存在极值现象,而产生极值现象的内在动因是驾驶人遵循“趋利避害”的基本决策机制,即驾驶过程中驾驶人力图实现机动性和安全性综合性能最优。受自然界包括物理和生物行为上的众多极值现象遵循最小作用量原理的启发,提出驾驶人决策机制遵循最小作用量原理的假设。随后建立抽象描述驾驶过程的物理模型,并提出最小作用量决策模型(Least Action Decision-making Model,LADM),通过与传统驾驶决策模型(经典跟车模型和换道模型)对比,分析结果显示LADM模型更具通用性。最后开展了实车试验,采集20名驾驶人在自由行驶、跟车行驶和邻车切入3种工况下的试验数据,分析计算并检验了不同驾驶人行车过程的理论最小作用量和实际作用量。试验结果表明:驾驶人在驾驶过程中的实际作用量与最小作用量之间无显著性差异,体现出驾驶人在行车过程中对安全和高效具有共性追求,验证了驾驶人决策机制遵循最小作用量原理。  相似文献   

10.
本文将汽车消费者的决策行为分成了购买关注、购买比较、购买决策等不同的阶段,并对不同决策阶段消费者的重视因素、信息渠道等进行深入的比较,发现不同.这样一方面使得我们对汽车消费者决策行为的认知更为深刻;另一方面也有助于生产厂商针对不同的消费者采取不同的说服和吸引措施,使得营销工作更加精准.  相似文献   

11.
在具有车道线的特定自动驾驶场景中,针对目前端到端的行为决策算法直接输入原始图像进行决策导致的网络模型迁移性差、预测精度欠佳、泛化能力不足等问题,提出一种基于分段学习模型的车辆自动驾驶行为决策算法。首先,基于GoogLeNet建立一种端到端的车道线检测网络模型,并引入车道中心线作为决策的重要线索提高算法的迁移能力,同时利用YOLOv3目标检测模型对本车道内前方最近障碍物进行位置检测;而后,经几何测量模型将两者检测结果转换成环境状态信息向量为决策做支撑;最后,构建基于长短期记忆(LSTM)网络的驾驶行为决策模型,根据编码的历史状态信息刻画出动态环境中车辆的运动模式,并结合当前时刻的状态推理得到驾驶行为参量。使用建立的真实驾驶场景数据集对模型分别进行训练、验证与测试,离线测试结果显示车道线检测模型的检测位置误差小于1.3%,车道内前方障碍物检测模型的检测精度达98%以上,驾驶行为决策网络模型表征预测优度的决定系数 大于0.7。为进一步验证算法的有效性,搭建了Simulink/PreScan联合仿真平台,多种工况下的仿真验证试验中多个评价指标均达到工程精度要求,实车测试的试验结果也表明该算法可实现复杂驾驶场景下平稳、准确无偏航的预测效果并满足实时性要求,且与传统端到端模式的算法相比,具有更好的迁移性和泛化能力。  相似文献   

12.
因交织区的强制换道存在紧迫性, 车辆换道行为在交织区后半段会出现因换道意愿强烈而产生的激进换道行为, 这种微观的换道行为将给交通流带来一定影响; 在人机混驾情形下, 不同类型换道切换控制模型同样可能影响交织区通行能力。在分析人机混驾交通流交织区换道行为特性的基础上, 将换道类型分为保守型换道和激进型换道; 在可接受安全间隙模型的基础上结合自动驾驶车辆间的协同行为, 构建自动驾驶车辆在保守状态下的协同换道模型; 以及在激进型状态下考虑目标车道后车类型影响下, 构建激进型换道模型。通过分析津保立交桥实地调研轨迹数据和NGSIM中US-101交织路段轨迹数据, 分别拟合了保守型、激进型换道模型切换点分布函数; 考虑不同车辆驾驶行为特性及其相互作用, 提出人机混驾条件下换道模型切换控制逻辑决策。以SUMO仿真软件搭建实验平台, 考虑人工驾驶车辆换道模型切换点分布特性, 以优化最大流率、交织区整体车辆运行速度、换道车辆速度等为目标, 确定不同自动驾驶车辆渗透率下自动驾驶车辆的最佳保守型-激进型换道模型切换点。仿真结果显示: 在交织区长度为250 m, 自动驾驶渗透率分别为0.2, 0.5, 0.8时, 自动驾驶换道模型切换点分别在180, 80, 50 m处达到最佳, 即随着自动驾驶渗透率的提高, 换道切换点最佳位置将向交织区入口处逐渐移动, 且在自动驾驶渗透率较低时这种换道切换点的变化较为明显; 在较高渗透率下, 由于协同换道出现频率增高, 自动驾驶强制性换道行为比例降低, 换道模型切换点对交织区通行能力的影响逐渐变小。本项研究对人机混驾条件下高速公路交织区自动驾驶车辆的换道控制提供决策依据   相似文献   

13.
本文中提出了一种基于模仿学习和强化学习的智能车辆换道行为决策方法。其中宏观决策模块通过模仿学习构建极端梯度提升模型,根据输入信息在车道保持、左换道和右换道中选择宏观决策指令,以此确定所需求解的换道行为决策子问题;各细化决策子模块通过深度确定性策略梯度强化学习方法得到优化策略,求解相应换道行为决策子问题,以确定车辆运动目标位置并下发执行。仿真结果表明:本文中提出方法的策略学习速度比单纯强化学习方法快,且其综合性能优于有限状态机、行为克隆模仿学习和单纯强化学习等方法。  相似文献   

14.
为了正确刻画智能网联环境下的车辆换道行为,提出基于BP神经网络的车辆换道决策模型.分析了交通流中车辆换道行为,以HighD自然驾驶数据集为数据来源,筛选出1 900组车辆换道和未换道信息作为模型的训练与验证,利用高斯滤波方法拟合目标车辆换道轨迹和横向位移轨迹,选择影响车辆换道决策的7个参数作为模型输入,建立BP神经网络...  相似文献   

15.
试验车道选择行为是自动驾驶车辆最基本的决策行为之一,利用车联网技术可以使车道选择结果更加全面、合理.首先,对高速公路自动驾驶车辆车道选择决策过程进行分析,并以车联网感知通信范围内的车辆的平均速度、重车比例及前往车道的理想换道时间为主要指标创建成本函数,根据计算结果输出最优车道序列;然后,以Gipps安全驾驶模型为基础,...  相似文献   

16.
17.
针对现有端到端自动驾驶模型输入数据类型单一导致预测精确度低的问题,选取RGB图像、深度图像和车辆历史连续运动状态序列作为多模态输入,并利用语义信息构建一种基于时空卷积的多模态多任务(Multimodal Multitask of Spatial-temporal Convolution,MM-STConv)端到端自动驾驶行为决策模型,得到速度和转向多任务预测参量。首先,通过不同复杂度的卷积神经网络提取场景空间位置特征,构建空间特征提取子网络,准确解析场景目标空间特征及语义信息;其次,通过长短期记忆网络(LSTM)编码-解码结构捕捉场景时间上、下文特征,构建时间特征提取子网络,理解并记忆场景时间序列信息;最后,采用硬参数共享方式构建多任务预测子网络,输出速度和转向角的预测值,实现对车辆的行为预测。基于AirSim自动驾驶仿真平台采集虚拟场景数据,以98 200帧虚拟图像及对应的车辆速度和转向角标签作为训练集,历经10 000次训练周期、6 h训练时长后,利用真实驾驶场景数据集BDD100K进行模型的测试与验证工作。研究结果表明:MM-STConv模型的训练误差为0.130 5,预测精确度达到83.6%,在多种真实驾驶场景中预测效果较好;与现有其他主流模型相比,该模型综合场景空间信息与时间序列信息,在预测车辆速度和转向角方面具有明显的优势,可提升模型的预测精度、稳定性和泛化能力。  相似文献   

18.
针对自动驾驶车辆换道轨迹规划时的操纵稳定性问题,基于CarSim/Simulink仿真平台建立了车辆动力学模型,构建了轨迹规划系统框架,通过轨迹信息后处理并提出了目标函数设计,进行了横向控制序列采样以保证车辆的稳定与极限性能,完成了算法对轨迹的综合评价选优。随后开展了仿真试验,对比分析了轨迹跟踪控制系统下的实际轨迹、最优规划方法所规划的换道轨迹。仿真结果表明,该轨迹规划系统框架及算法模型能有效提高车辆的操纵稳定性,可实现冰雪路面等极端工况下自动驾驶车辆换道轨迹规划。  相似文献   

19.
为了研究高速公路小型车的换道行为特性,采用2台无人机同时在200 m的高空对交通流进行拍摄,获取交通流运行状态。构建拍摄路段的高精度地图,获取每一时刻车辆的精确运行状态数据,在此基础上对2个视频进行拼接,最终获得车道位置、速度、车辆编号等8项关键指标,共提取换道行为1 520条,筛选后得到完整的自由换道数据942条。采用车辆轨迹是否持续偏移作为判断换道行为起终点的依据,在此基础上分析换道的时间长度、空间长度、与周边车辆的相互状态以及换道行为的安全性等16个特征参数。得出平均换道时间长度为6.09 s,平均换道空间距离为148.08 m,换道时间与空间长度均符合对数正态分布。换道车辆与目标车道后方车辆的平均距离最小(34.29 m),其相对距离在10 m以内的占28.24%,驾驶人为了加快行驶,在与目标车道后方车辆相对距离较小的情况下,依然采取换道措施。与正前方车辆的相对速度差最大,平均值为10.2 km·h-1,并且在83%的情况下,本车的速度大于前车,说明车辆自由换道是由于前方车辆行驶速度较慢所引起。采用TTC,MTC分别对换道起始时刻的安全性进行分析,并将安全状态划分为4种类型:严重-紧急状态、严重-非紧急状态、非严重-紧急状态、非严重-非紧急状态。其中严重-非紧急,非严重-非紧急这2种状态占比最高。该研究成果对了解中国驾驶人在高速公路上的换道行为特性,以及对建立适用于中国实际交通环境特征的换道行为模型具有一定参考意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号