首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Tribological properties of chemical vapor deposition (CVD) diamond films greatly affect its application in the mechanical field. In this paper, a novel multilayer structure is proposed, with which multilayer diamond films are deposited on silicon carbide by hot filament CVD (HFCVD) method. The different micrometric diamond grains are produced by adjusting deposition parameters. The as-deposited multilayer diamond films are characterized by scanning electron microscope (SEM) and white-light interferometry. The friction tests performed on a reciprocating ball-on-plate tribometer suggest that silicon carbide presents the friction coefficient of 0.400 for dry sliding against silicon nitride (Si3N4) ceramic counterface. With the water lubrication, the corresponding friction coefficients of silicon carbide and as-deposited multilayer diamond films further reduce to 0.193 and 0.051, respectively. The worn surfaces indicate that multilayer diamond films exhibit considerably high wear resistance.  相似文献   

2.
Chemical vapor deposition (CVD) diamond coated drills are fabricated by depositing diamond films on Co-cemented tungsten carbide (WC-Co) drills. The characteristics of as-deposited diamond coatings are investigated by scanning electron microscope (SEM) and Raman spectra. To evaluate the cutting performance of diamond coated drills, comparative drilling tests are conducted using diamond coated and uncoated WC-Co drills, with carbon fiber reinforced plastics (CFRPs) as the workpiece on a high-speed computer numerical control (CNC) machine. Thrust force and tool wear are measured during the drilling process. The results show that diamond coated drill exhibits better cutting performance, compared with the uncoated drill. The value of flank wear is about 70 μm after machining 90 holes, about a half of that of theWC-Co drill with 145μm after drilling only 30 holes. The wear rate of WC-Co drill is higher than that of diamond coated drill before diamond films peeling off. The diamond coated drill achieves more predictable hole quality. The improved cutting performance of the diamond coated drill is due to the high hardness, wear resistance and low coefficient of friction.  相似文献   

3.
The ultra-high-strength steel (UHSS) plays an important role in the mechanical industry because of their special performances. The machinability of 30CrMnSiNi2A steel was studied in dry milling with two different coated tools in the present work. This paper introduced that 30CrMnSiNi2A steel was a kind of difficult-to-machine materials. The results showed that the cutting force components of feed direction and cutting width direction, i.e. F x and F y , increased slightly with increasing the cutting speed and feed rate. The values of axial force component F z were much larger than F x and F y , and increased obviously with increasing the milling speed. The workpiece surface had the minimum roughness at the cutting speed of 150 m/min. The physical vapor deposition (PVD) coated ((Ti, Al)N-TiN) insert was more suitable for machining 30CrMnSiNi2A steel than the chemical vapor deposition (CVD) coated (Ti(C, N)-Al 2 O 3 ) insert. Moreover, the main failure modes of PVD-coated insert were micro-chipping and coating spalling. The wear modes of CVD-coated insert were ploughing, coating spalling, and cratering. The serious adhesive wear and the abrasion with some adhesion were the main wear mechanism of PVD- and CVD-coated inserts, respectively.  相似文献   

4.
Cuprous oxide (Cu2O) thin films have been deposited on glass substrate by reactive magnetron sputtering method using Cu target and argon oxygen gas atmosphere. Effect of oxygen flow rate on structural and optical properties of thin films has been discussed. The results of X-ray diffraction, ultraviolet-visible spectrophotometry and atomic force micrograph indicated that the condition window for single Cu2O phase was about 3.8 to 4.4 cm3/min, and the optimum oxygen flow rate was 4.2 cm3/min. The optical band gap E g of Cu2O film was determined by using the data of transmittance versus wavelength, and slightly decreased from 2.46 to 2.40 eV with the increase of oxygen flow rate from 3.8 to 4.4 cm3/min. The Cu2O film formed at the oxygen flow rate of 4.2 cm3/min had an optical band gap of 2.43 eV.  相似文献   

5.
In this study, (100)-oriented growth of Ba0.5Sr0.5TiO3 (BST) /LaNiO3 (LNO) stacks was obtained on Pt(111)/SiO2/Si substrates by r.f. magnetron sputtering. The orientation of the subsequently deposited Ba0.5Sr0.5TiO3 thin film was strongly affected by the LNO under layer, and the BST thin film deposited on the (100)LNO-coated Si substrate was also found to have a significant (100)-oriented texture. Effects of LNO interlayer on the dielectric properties of BST thin films were investigated. As a result, the tunability of BST thin film was greatly improved with the insertion of (100)-oriented LNO under layer with proper thickness. Foundation item: the National Key Lab of Nano/Micro Fabrication Technology (No. 9140C 790310060C79) and the National Natural Science Foundation of China (No. 60701012)  相似文献   

6.
The microstructure and hardness of conventionally solidified Ni-xSi (x = 21.4%, 22%, 24%, 26%) alloys were investigated. The solidification microstructures of different Ni-Si alloys were observed by optical microscope (OM) and scanning electron microscope (SEM) and the phase composition was indentified under the help of energy dispersive X-ray (EDX) analysis. The macro- and micro-hardness of the Ni-Si alloys at room temperature were also examined. The experimental results indicated that both the microstructure and hardness closely depended on the Si content. Due to the vast formation of primary ??-Ni31Si12 phase, the hardness of Ni-26.0%Si alloy was significantly improved compared with that of Ni-21.4%Si eutectic alloy. However, the fracture toughness was greatly weakened simultaneously. The (?? 1-Ni3Si+??-Ni31Si12) lamellar eutectoid structure formed in the primary ??-Ni31Si12 phase exhibited better ductility than single ??-Ni31Si12 phase at the cost of relatively small hardness reduction.  相似文献   

7.
Direct electrochemical extraction of Ti5Si3 from pressed cathode pellets comprising of powdered Ti/Sicontaining metal oxide compounds was investigated by using molten salt electro-deoxidation technology.Three groups of mixtures including TiO2 mixed with SiO2,Ti-bearing blast furnace slag(TBFS) mixed with TiO2, and TBFS mixed with high-titanium slag(HTS) were prepared at the same stoichiometric ratio(Ti:Si=5:3) corresponding to the target composition of Ti5Si3,and used as the starting materials in this experiment,respectively. The pressed porous cylindrical pellet of the Ti/Si-containing compounds served as a cathode,and two different anode systems,i.e.,the inert solid oxide oxygen-ion-conducting membrane(SOM) based anode system and graphite-based anode system were used contrastively.The electrochemical experiment was carried out at 900-1050℃and 3.0-4.0 V in molten CaCl2 electrolyte.The results show that the oxide components were electro-deoxidized effectively and Ti5Si3 could be directly extracted from these complex Ti/Si-containing metal oxide compounds.  相似文献   

8.
Cubic boron nitride(c-BN) films were deposited on W6Mo5Cr4V2 high speed steel(HSS) substrate implanted with boron ion by RF-magnetron sputtering. The films were analyzed by the bending beam method, scratch test, XPS and AFM. The experimental results show that the implantation of boron atom can reduce the internal stress and improve the adhesion strength of the films. The critical load of scratch test rises to 27.45 N, compared to 1.75 N of c-BN film on the unimplanted HSS. The AFM shows that the surface of the c-BN film on the implanted HSS is low in roughness and small in grain size. Then the composition of the boron implanted layer was analyzed by the XPS. And the influence of the boron implanted layer on the internal stress and adhesion strength of c-BN films were investigated.  相似文献   

9.
The energetic and electronic structures of precipitates on the Cu-rich side of Cu-Ni-Si alloys were investigated by using the first-principle calculations based on plane-wave pseudopotential method. The negative formation heats and the cohesive energies of these precipitates were estimated with electronic structure calculations, and their structural stability was also analyzed. The results show that δ-Ni2Si, γ-Ni5Si2 and β-Ni3Si precipitates all have great alloying ability and structural stability, which, after comparing their density of states (DOS), is found attributed to the pseudogap effect near the Fermi level (E F) and strong hybridization between the Ni-3d and Si-3p states. Compared with the other two precipitates, the δ-Ni2Si precipitate has the greatest structural stability, which is resulted from its lower DOS at E F and the main bonding peaks slightly moving to the low energy region.  相似文献   

10.
Considering the modeling uncertainties and external disturbance, a kind of sliding mode robust H∞fault-tolerant control method for time delay system with actuator fault is proposed. The upper-bound of the uncertainties is considered as a known constant, while the upper-bound of the actuator fault is unknown. A sufficient condition for the existence of an integral sliding mode dynamics is given in terms of linear matrix inequality(LMI). A novel adaptive law is given to estimate the unknown upper-bound of faults. On this basis, a type of sliding mode robust H∞fault-tolerant control law is designed to guarantee the asymptotic stability and the H_∞ performance index of the system. Finally, the simulation on quad-rotor semi-physical platform demonstrates the reliability and validity of the method.  相似文献   

11.
Zn0.95?x Co0.05Cu x O (atomic ratio, x = 0?C8%) thin films are fabricated on Si(111) substrate by reactive magnetron sputtering method. Detailed characterizations indicate that the doped Cu ions substitute the Zn2+ ions in ZnO lattice. The doped Cu ions are in +1 and +2 mixture valent state. The ferromagnetism of the Zn0.95?x Co0.05Cu x O film increases gradually with the increase of the Cu+ ion concentration till x = 6%, but decreases for higher Cu concentration. Experimental results indicate that the increase of ferromagnetism is not owing to the magnetic contribution of Cu+ ions themselves, but owing to the enhancement of magnetic interaction between Co2+ ions, which suggests that p-type doping of Cu+ ions plays an important role in mediating the ferromagnetic coupling between Co ions.  相似文献   

12.
Microstructure and forming quality of friction stir welding joints of 7075Al and AZ31BMg with different welding parameters were analyzed. The results show that, good welded joint is obtained when the rotating frequency is 13 r/s and the welding speed is 30 mm/min. An irregular area is formed in the welding center. Meanwhile, the river pattern and eddy-like distribution are found in the weld nugget zone. Besides, brittle intermetallic compounds Al12Mg17 and Al3Mg2 are found in the welded joint. They cause the increase of microhardness of welded joint. The maximum tension stress of welded joint is 112MPa.  相似文献   

13.
The effects of several fluxes on purification, microstructures and properties of A00 aluminum have been studied. The experimental results and analyses indicate that many cracks and large porosities exist in the surface film above the melt purified by C2Cl6 and that the film is floc and mostly composed of Al2O3 and pure aluminum, which carries many carbon particles and AlCl3 not fully volatilized. And then over 50% (mass fraction) of the all-melting residue is pure aluminum, which is one of the major reasons for high melting loss. Moreover, because of a mass of gas bubbles and a state of seethe, there are many inclusions which size is under 10 ??m in the microstructure of A00 aluminum purified with C2Cl6 or fluxes containing C2Cl6. With this purifying method, the aluminum crystal grains are extended along the radius that was observed firstly and the average crystal size of A00 aluminum are about 100?C150 ??m. In addition, small size inclusions have little affected on tensile strength and micro inclusions under 10 ??m have little affected on elongation.  相似文献   

14.
A series of Pd/Co3O4 catalysts were prepared by Self-Propagating High-Temperature Synthesis (SHS) method in this study, and electric field was applied for catalytic combustion of lean methane over Pd/Co3O4 catalysts at low temperature. When electric field was applied, the catalytic combustion performance of Pd/Co3O4 catalysts was greatly improved, and the application of electric field could reduce the load of active element Pd to some extent while maintaining the same efficiency. Based on experimental tests and the analysis results of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), H2-temperature-programmed reduction (H2-TPR) and in-situ diffuse reflectance infrared Fourier transform spectroscopy (in-situ DRIFTS), the mechanism of catalytic oxidation of CH4 over Pd/Co3O4 catalysts in electric field was proposed. The catalytic combustion of CH4 occurs only when the temperature is higher than 250 °C normally, but when electric field was applied, the whole process of CH4 oxidation was promoted significantly and the reaction temperature was reduced. Electric field could promote the reduction of the support Co3O4 to release the lattice oxygen, resulting in the increase of PdOx and the surface chemisorbed oxygen, which could provide more active sites for the low-temperature oxidation of CH4. Furthermore, electric field could accelerate the dehydroxylation of CoOOH to further enhance the activity of the catalysts.  相似文献   

15.
Near infrared (NIR) light induced photothermal effect for Fe3O4 nanoparticles, contained in Pluronic F127 micelles, has been studied and it exhibits high photothermal converting efficiency. Heat is found to be rapidly generated in micelles containing Fe3O4 nanoparticles by NIR laser irradiation. Upon irradiation at 808 nm light and with mass concentration of Fe3O4 nanoparticles in 4 g/L, the micelle temperature increase is higher than 34°C for 10min irradiation. The maximum temperature of micelles containing Fe3O4 nanoparticles in 4 g/L reaches 62°C.  相似文献   

16.
This paper introduces the influence factors of axial stiffness of tubular X-joints. The analysis model of tubular joints using plate and shell finite element method is also made. Systematic single-parameter analysis of tubular X-joints is performed using Ansys program. The influences of those factors, including ratio of brace diameter to chord diameter (β), ratio of chord diameter to twice chord thickness (γ), ratio of brace wall thickness to that of chord (τ), brace-to-chord intersection angle (θ), and chord stress ratio, ratio of another brace diameter to chord diameter, in-plane and out-of-plane moment of braces, etc., on stiffness of tubular X-joints are analyzed.Two non-dimensional parameters-joint axial stiffness factor ηN and axial force capacity factor ωN are proposed,and the relationship curve of the two factors is determined. Computational formulas of tubular X-joint axial stiffness are obtained by multi-element regression technology. The formulas can be used in design and analysis of steel tubular structures.  相似文献   

17.
The spacecraft space radiation environment was simulated by60 Co source. The polytetrafluoroethylene(PTFE) coatings were fabricated on LY12 substrates. And the effect of gamma(γ) irradiation on the tribological behavior of PTFE coatings under vacuum conditions was investigated. Results indicate that the radiation dose has insignificant effect on the friction coefficient of PTFE coatings, and the wear of PTFE coatings reduces with the increase of gamma dose. As the gamma dose was 100 kGy, the friction coefficient of the PTFE coatings first increased with the increase of sliding velocity and then decreased, and the wear of the PTFE coatings decreased with the increase of sliding speed. As the gamma dose was 100 kGy, the friction coefficient of the PTFE coatings first decreased with the increase of load and then increased, and the wear rate of PTFE coatings increased with the increase of load. Scanning electron microscope was utilized.  相似文献   

18.
Phase space can be constructed for N equal and distinguishable binary subsystems which are correlated in a scale-invariant manner. In the paper, correlation coefficient and reduced probability are introduced to characterize the scale-invariant correlated binary subsystems. Probabilistic sets for the correlated binary subsystems satisfy Leibnitz triangle rule in the sense that the marginal probabilities of N-system are equal to the joint probabilities of the (N −1)-system. For entropic index q ≠ 1, nonextensive entropy S q is shown to be additive in the scale-invariant occupation of phase space.  相似文献   

19.
NH3-H2O falling film absorption usually takes place with low solution flow rate in real absorption refrigeration system. An experimental study of inner vertical absorption is carried out for the consideration of air-cooling absorber. Variable working conditions are tested to evaluate the heat and mass transfer performances.The traditional evaluation method based on log-mean-temperature(concentration) difference is criticized for its lack of theoretical basis while simultaneous heat and mass transfer process occurs. A new method proposed by Kim and Infante Ferreira is modified to evaluate the experimental results with reasonable assumptions. The method is based on the derivation of coupled heat and mass transfer differential equations of NH3-H2O absorption process.The analysis of the same experimental data shows that the new method realizes better consistency with smaller error, especially in heat transfer aspect. Heat and mass transfer performance is enhanced with the increase of solution Reynolds number. Sub-cooling of inlet weak solution also has positive influence on the absorption process,which should be evaluated by the new method correctly. Two correlations are developed to evaluate both Nusselt and Sherwood numbers for the design of air-cooling absorber.  相似文献   

20.
采用溶胶-凝胶(Sol-Gel)浸渍提拉法(基于组装的小型提拉装置)在普通玻璃片上制备出ZnO:Al(ZAO)薄膜,利用扫描电子显微镜、紫外-可见分光光度计、数字式四探针测试仪等检测手段分别对其进行了分析比较。结果表明:Al^3+浓度为1.0%的ZAO薄膜表面最为致密均匀;随着退火温度的提高,薄膜的晶体平均粒径明显增大,电阻率逐渐减小;不同掺Al量的ZAO薄膜在可见光区的平均透光率均在70%以上,当Al^3+浓度为1.5%时,550℃退火2h,电阻率最小,为5.9×10^-2Ω·cm。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号